Dry Mergers in GEMS: The Dynamical Evolution of Massive Early‐Type Galaxies (original) (raw)

Abstract

We have used the 28 ′ × 28 ′ Hubble Space Telescope image mosaic from the GEMS (Galaxy Evolution from Morphology and SEDs) survey in conjunction with the COMBO-17 photometric redshift survey to constrain the incidence of major mergers between spheroid-dominated galaxies with little cold gas (dry mergers) since z = 0.7. A set of N-body merger simulations was used to explore the morphological signatures of such interactions: they are recognizable either as < 5 kpc separation close pairs or because of broad, low surface brightness tidal features and asymmetries. Data with the depth and resolution of GEMS are sensitive to dry mergers between galaxies with M V −20.5 for z 0.7; dry mergers at higher redshifts are not easily recovered in single-orbit HST imaging. Six dry mergers (12 galaxies) with luminosity ratios between 1:1 and 4:1 were found from a sample of 379 red early-type galaxies with M V < −20.5 and 0.1 < z < 0.7. The simulations suggest that the morphological signatures of dry merging are visible for ∼ 150 Myr and we use this timescale to convert the observed merger incidence into a rate. On this basis we find that present day spheroidal galaxies with M V < −20.5 on average have undergone between 0.5 and 2 major dry mergers since z ∼ 0.7. We have compared this result with the predictions of a Cold Dark Matter based semi-analytic galaxy formation model. The model reproduces the observed declining major merger fraction of bright galaxies and the space density of luminous early-type galaxies reasonably well. The predicted dry merger fraction is consistent with our observational result. Hence, hierarchical models predict and observations now show that major dry mergers are an important driver of the evolution of massive early-type galaxies in recent epochs.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (63)

  1. Barnes, J. E. 2002, MNRAS, 333, 481
  2. Barnes, J. E., & Hernquist, L. 1996, ApJ, 471, 115
  3. Bell, E. F., et al. 2004a, ApJ, 608, 752
  4. Bell, E. F., et al. 2004b, ApJ, 600, L11
  5. Bender, R. 1988, A&A, 202, L5
  6. Bendo, G. J., & Barnes, J. E. 2000, MNRAS, 316, 315
  7. Benson, A. J., Lacey, C. G., Baugh, C. M., Cole, S., & Frenk, C. S. 2002, MNRAS, 333, 156
  8. Bower, R. G., Kodama, T., & Terlevich, A. 1998, MNRAS, 299, 1193
  9. Boylan-Kolchin, M., Ma, C.-P., & Quataert, E. 2005, MNRAS, 362, 184
  10. Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000
  11. Bundy, K., Fukugita, M., Ellis, R. S., Kodama, T., & Conselice, C. J., 2004, ApJ, 601, L123
  12. Chen, H.-W., et al. 2003, ApJ, 586, 745
  13. Conselice, C. J., Bershady, M., Dickinson, M., & Papovich, C. 2003, AJ, 126, 1183
  14. Conselice, C. J., Blackburne, J. A., & Papovich, C. 2005, ApJ, 620, 564
  15. Cross, N. J. G., et al. 2004, AJ, 128, 1990
  16. de Lucia, G., et al. 2004a, ApJ, 610, L77
  17. de Lucia, G., Kauffmann, G., & White, S. D. M. 2004b, MNRAS, 349, 1101
  18. Domínguez-Tenreiro, R., Sáiz, A., & Serna, A. 2004, ApJ, 611, L5
  19. Drory, N., Bender, R., Feulner, G., Hopp, U., Maraston, C., Snigula, J., & Hill, G. J. 2004, ApJ, 608, 742
  20. Faber, S. M., et al. 1997, AJ, 114, 1771
  21. Faber, S. M., et al. 2005, submitted to ApJ (astro-ph/0506044)
  22. Ford, H., et al. 2003, SPIE, 4854, 81
  23. Giavalisco, M., et al. 2003, ApJ, 600, L93
  24. González-García, A. C., & van Albada, T. S. 2003, MNRAS, 342, L36
  25. Graham, A. 2004, ApJ, 613, L33
  26. Khochfar, S., & Burkert, A. 2003, ApJ, 597, L117
  27. Khochfar, S., & Burkert, A. 2005, MNRAS, 359, 1379
  28. Kodama, T., et al. 2004, MNRAS, 350, 1005
  29. Kormendy, J., & Bender, R. 1996, ApJ, 464, L119
  30. Kroupa, P. 2001, MNRAS, 322, 231
  31. Kuntschner, H. 2000, MNRAS, 315, 184
  32. Lauer, T. R., et al. 1995, AJ, 110, 2622
  33. Le Fèvre, et al. 2000, MNRAS, 311, 565
  34. Le Fèvre, et al. 2004, A&A, 428, 1043
  35. Lin, L., et al. 2005, ApJ, 671, L9
  36. Madejsky, R., Bender, R., & Möllenhoff, C. 1991, A&A, 242, 58
  37. Makino, J., & Hut, P. 1997, ApJ, 481, 83
  38. McIntosh, D. H., et al. 2005, ApJ, 632, 191
  39. Melbourne, J., et al. 2005, ApJ, 625, L27
  40. Naab, T., & Burkert, A. 2001, in The Central Kiloparsec of Starbursts and AGN: The La Palma Connection, eds. J. H. Knapen, J. E. Beckman, I. Shlosman, and T. J. Mahoney. ASP conference proceedings v. 249, 735 (San Francisco: Astronomical Society of the Pacific)
  41. Naab, T., & Burkert, A. 2003, ApJ, 597, 893
  42. Naab, T., Burkert, A., & Hernquist, L. 1999, ApJ, 523, L133
  43. Naab, T., Khochfar, S., & Burkert, A. 2005, submitted to ApJ Letters (astro-ph/0509667)
  44. Nipoti, C., Londrillo, P., & Ciotti, L. 2003, MNRAS, 342, 501
  45. Patton, D. R., et al. 2002, ApJ, 565, 208
  46. Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2002, AJ, 124, 266
  47. Rix, H.-W., et al. 2004, ApJS, 152, 163
  48. Saracco, P., et al. 2005, MNRAS, 357, 40
  49. Schweizer, F., & Seitzer, P. 1992, AJ, 104, 1039
  50. Sérsic, J. L. 1968, Atlas de Galaxies Australes (Cordoba: Observatorio Astronomico)
  51. Somerville, R. S. & Kolatt, T. S. 1999, MNRAS, 305, 1
  52. Somerville, R. S., & Primack, J. R., 1999, MNRAS, 310, 1087
  53. Somerville, R. S., Primack, J. R., & Faber, S. M. 2001, MNRAS, 320, 504
  54. Somerville, R. S., et al. 2004, ApJ, 600, L135
  55. Thomas, D., Maraston, C., Bender, R., & Mendes de Oliveira, C. 2005, ApJ, 621, 673
  56. Trager, S. C., Faber, S. M., Worthey, G., & González, J. J. 2000, AJ, 120, 165
  57. Tran, K.-V. H., van Dokkum, P., Franx, M., Illingworth, G. D., Kelson, D. D., & Förster Schreiber, N. M. 2005, ApJ, 627, L25
  58. Toomre, A., & Toomre, J. 1972, ApJ, 178, 623
  59. van der Wel, A., Franx, M., van Dokkum, P. G., & Rix, H.-W. 2004, ApJ, 601, L5
  60. van Dokkum, P. G., Franx, M., Fabricant, D., Kelson, D. D., & Illingworth, G. D. 1999, ApJ, 520, L95
  61. Wang, B. & Heckman, T. 1996, ApJ, 457, 645
  62. Wolf, C., et al. 2004, A&A, 421, 913
  63. Wolf, C., et al. 2005, ApJ, 630, 771