First-in-human study of ABBV-075 (mivebresib), a pan-inhibitor of bromodomain and extra terminal (BET) proteins, in patients (pts) with relapsed/refractory (RR) acute myeloid leukemia (AML): Preliminary data (original) (raw)
Related papers
Molecular Cancer Therapeutics, 2021
Dual bromodomain BET inhibitors that bind with similar affinities to the first and second bromodomains across BRD2, BRD3, BRD4, and BRDT have displayed modest activity as monotherapy in clinical trials. Thrombocytopenia, closely followed by symptoms characteristic of gastrointestinal toxicity, have presented as dose-limiting adverse events that may have prevented escalation to higher dose levels required for more robust efficacy. ABBV-744 is a highly selective inhibitor for the second bromodomain of the four BET family proteins. In contrast to the broad antiproliferative activities observed with dual bromodomain BET inhibitors, ABBV-744 displayed significant antiproliferative activities largely although not exclusively in cancer cell lines derived from acute myeloid leukemia and androgen receptor positive prostate cancer. Studies in acute myeloid leukemia xenograft models demonstrated antitumor efficacy for ABBV-744 that was comparable with the pan-BET inhibitor ABBV-075 but with an...
Cancer research, 2017
ABBV-075 is a potent and selective BET family bromodomain inhibitor that recently entered Phase I clinical trials. Comprehensive preclinical characterization of ABBV-075 demonstrated broad activity across cell lines and tumor models representing a variety of hematological malignancies and solid tumor indications. In most cancer cell lines derived from solid tumors, ABBV-075 triggers prominent G1 cell cycle arrest without extensive apoptosis. In this study, we show that ABBV-075 efficiently triggers apoptosis in acute myeloid leukemia (AML), non-Hodgkin's lymphoma (NHL) and multiple myeloma (MM) cells. Apoptosis induced by ABBV-075 was mediated in part by modulation of the intrinsic apoptotic pathway, exhibiting synergy with the BCL-2 inhibitor venetoclax in preclinical models of AML. In germinal center diffuse large B cell lymphoma, BCL-2 levels or venetoclax sensitivity predicted the apoptotic response to ABBV-075 treatment. In vivo combination studies uncovered surprising bene...
Cancers, 2019
Alterations in protein-protein and DNA-protein interactions and abnormal chromatin remodeling are a major cause of uncontrolled gene transcription and constitutive activation of critical signaling pathways in cancer cells. Multiple epigenetic regulators are known to be deregulated in several hematologic neoplasms, by somatic mutation, amplification, or deletion, allowing the identification of specific epigenetic signatures, but at the same time providing new therapeutic opportunities. While these vulnerabilities have been traditionally addressed by hypomethylating agents or histone deacetylase inhibitors, pharmacological targeting of bromodomain-containing proteins has recently emerged as a promising approach in a number of lymphoid and myeloid malignancies. Indeed, preclinical and clinical studies highlight the relevance of targeting the bromodomain and extra-terminal (BET) family as an efficient strategy of target transcription irrespective of the presence of epigenetic mutations....
Molecular Cancer Therapeutics, 2018
Introduction: BET proteins are key epigenetic regulators of transcription whose inhibition may suppress expression of genes that promote oncogenic pathways. INCB054329, a potent small-molecule inhibitor of BET proteins, inhibited growth of model cell lines derived from solid and hematologic tumors in vitro and in vivo. We report safety, pharmacokinetics (PK), pharmacodynamics (Pd), and efficacy from a phase 1/2 study of INCB054329 in pts with advanced malignancies (NCT02431260). Methods: Eligible adults with relapsed and/or refractory advanced malignancies, ≥1 prior therapy, and ECOG performance status ≤1 received oral INCB054329 in 21-d cycles until withdrawal criteria were met. Dose escalation followed a 3+3 design; PK and Pd were assessed after single and multiple doses. Primary endpoints were safety and tolerability. Results: As of the data cut-off, 54 pts (solid tumors, n=50; lymphoma, n=4) were enrolled at doses ranging from 15-30 mg QD to 15-25 mg BID, including intermittent ...
AZD5153: a novel bivalent BET bromodomain inhibitor highly active against hematologic malignancies
Molecular cancer therapeutics, 2016
The bromodomain and extraterminal (BET) protein BRD4 regulates gene expression via recruitment of transcriptional regulatory complexes to acetylated chromatin. Pharmacological targeting of BRD4 bromodomains by small-molecule inhibitors has proven to be an effective means to disrupt aberrant transcriptional programs critical for tumor growth and/or survival. Herein, we report AZD5153, a potent, selective, and orally available BET/BRD4 bromodomain inhibitor possessing a bivalent binding mode. Unlike previously described monovalent inhibitors, AZD5153 ligates two bromodomains in BRD4 simultaneously. The enhanced avidity afforded through bivalent binding translates into increased cellular and antitumor activity in preclinical hematologic tumor models. In vivo administration of AZD5153 led to tumor stasis or regression in multiple xenograft models of Acute Myeloid Leukemia (AML), Multiple Myeloma (MM), and Diffuse Large B-cell Lymphoma (DLBCL). The relationship between AZD5153 exposure a...
BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells
Oncotarget
The bromodomain (BRD) and extraterminal (BET) proteins including BRD2, BRD3 and BRD4 have been identified as key targets for leukemia maintenance. A novel oral inhibitor of BRD2/3/4, the thienotriazolodiazepine compound OTX015, suitable for human use, is available. Here we report its biological effects in AML and ALL cell lines and leukemic samples. Exposure to OTX015 lead to cell growth inhibition, cell cycle arrest and apoptosis at submicromolar concentrations in acute leukemia cell lines and patient-derived leukemic cells, as described with the canonical JQ1 BET inhibitor. Treatment with JQ1 and OTX15 induces similar gene expression profiles in sensitive cell lines, including a c-MYC decrease and an HEXIM1 increase. OTX015 exposure also induced a strong decrease of BRD2, BRD4 and c-MYC and increase of HEXIM1 proteins, while BRD3 expression was unchanged. c-MYC, BRD2, BRD3, BRD4 and HEXIM1 mRNA levels did not correlate however with viability following exposure to OTX015. Sequentia...
Oncogene, 2018
High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements, mostly known as double-hit lymphoma (DHL), is a rare entity characterized by morphologic and molecular features between Burkitt lymphoma and the clinically manageable diffuse large B-cell lymphoma (DLBCL). DHL patients usually undergo a rapidly progressing clinical course associated with resistance to standard chemo-immunotherapy. As a consequence, the prognosis of this entity is particularly poor with a median overall survival inferior to 1 year. ABT-199 (venetoclax) is a potent and selective small-molecule antagonist of BCL-2 recently approved for the treatment of a specific subtype of lymphoid neoplasm. In this study, we demonstrate that single-agent ABT-199 efficiently displaces BAX from BCL-2 complexes but fails to maintain a significant antitumor activity over time in most MYC+/BCL2+DHL cell lines and primary cultures, as well as in a xenograft mouse model of the disease. We further identify the accumulation of the BCL2-like protein BFL-1 to be a major mechanism involved in acquired resistance to ABT-199. Noteworthy, this phenomenon can be counteracted by the BET bromodomain inhibitor CPI203, since gene expression profiling identifies BCL2A1, the BFL-1 coding gene, as one of the top apoptosisrelated gene modulated by this compound. Upon CPI203 treatment, simultaneous downregulation of MYC and BFL-1 further overcomes resistance to ABT-199 both in vitro and in vivo, engaging synergistic caspase-mediated apoptosis in DHL cultures and tumor xenografts. Together, these findings highlight the relevance of BFL-1 in DH lymphoma-associated drug resistance and support the combined use of a BCL-2 antagonist and a BET inhibitor as a promising therapeutic strategy for patients with aggressive DHL.