Line ratios for helium-like ions: Applications to collision-dominated plasmas (original) (raw)
2001, Astronomy & Astrophysics
The line ratios R and G of the three main lines of He-like ions (triplet: resonance, intercombination, forbidden lines) are calculated for C v, N vi, O vii, Ne ix, Mg xi, and Si xiii. These ratios can be used to derive electron density ne and temperature Te of hot late-type stellar coronae and O, B stars from high-resolution spectra obtained with Chandra (LETGS, HETGS) and XMM-Newton (RGS). All excitation and radiative processes between the levels and the effect of upper-level cascades from collisional electronic excitation and from dielectronic and radiative recombination have been considered. When possible the best experimental values for radiative transition probabilities are used. For the higher-Z ions (i.e. Ne ix, Mg xi, Si xiii) possible contributions from blended dielectronic satellite lines to each line of the triplets were included in the calculations of the line ratios R and G for four specific spectral resolutions: RGS, LETGS, HETGS-MEG, HETGS-HEG. The influence of an external stellar radiation field on the coupling of the 2 3 S (upper level of the forbidden line) and 2 3 P levels (upper levels of the intercombination lines) is taken into account. This process is mainly important for the lower-Z ions (i.e. C v, N vi, O vii) at moderate radiation temperature (T rad). These improved calculations were done for plasmas in collisional ionization equilibrium, but will be later extended to photo-ionized plasmas and to transient ionization plasmas. The values for R and G are given in extensive tables, for a large range of parameters, which could be used directly to compare to the observations.