Amplification strategies in MR imaging: Activation and accumulation of sensing contrast agents (SCAs (original) (raw)

PARACEST Agents: Modulating MRI Contrast via Water Proton Exchange

Accounts of Chemical Research, 2003

Scientific interest in optimizing the properties of gadolinium (III) complexes as MRI contrast agents has led to many new insights into lanthanide ion coordination chemistry in the last two decades. Among these was the surprising observation that water exchange in lanthanide (III) derivatives of DOTA can be modulated dramatically by judicious choice of ligand side chain and Ln 3+ ionic radii. This resulted in the discovery of paramagnetic CEST agents for altering MRI image contrast based upon the chemical exchange saturation transfer mechanism. The goal of this article is to review the factors that govern water molecule and water proton exchange in these complexes and to compare the potential sensitivity of PARACEST agents versus Gd 3+-based T1 relaxation agents for altering tissue contrast.

Exploiting the Proton Exchange as an Additional Route to Enhance the Relaxivity of Paramagnetic MRI Contrast Agents

Inorganic Chemistry, 2018

The relaxivity of Gd(HP-DO3A) was studied as a function of pH and buffer composition in order to identify the main factors of the observed relaxation enhancement due to the exchange of the coordinated hydroxyl proton. It was established that the paramagnetic relaxation time, T 1M , of the coordinated hydroxyl proton is about 50% shorter than that of the protons in the coordinated water molecule. The control of the pK of the coordinated alcoholic −OH moiety in the ligand is fundamental to utilize the proton exchange enhanced relaxivity under physio/pathologic conditions. A new derivative of Gd(HP-DO3A) was synthesized by replacing the −CH 3 group with a −CF 3 moiety. In this complex, the −OH group becomes more acidic. Consequently, the maximum contribution of the proton exchange to the relaxivity is shifted to a lower pH region with the fluorinated ligand.

Innovative magnetic resonance imaging diagnostic agents based on paramagnetic Gd(III) complexes

Biopolymers, 2002

complexes are under intense scrutiny as contrast agents for magnetic resonance imaging (MRI). They act by enhancing tissutal proton relaxation rates. Much has already been done in order to get an in-depth understanding of the relationships between structure, dynamics, and contrastographic ability of these paramagnetic complexes. Their potential in the assessment of flow, perfusion, and capillary permeability has already been established. The next challenges are in the field of molecular imaging applications, which would allow the attainment of early diagnosis based on the recognition of specific reporters of the onset of the pathological state. To this end, Gd(III) complexes have to be endowed with improved targeting capabilities by conjugating suitable recognition synthons on their surfaces. Small peptides are candidates of choice for the attainment of this goal. Moreover, the intrinsic low sensitivity of the NMR techniques implies the need to deliver large amounts of contrast agents to the target in order to get its visualization in the resulting images. Highly efficient delivery systems have been identified, which bring a great promise for the development of innovative diagnostic agents based on Gd(III) complexes.

Chemistry of paramagnetic and diamagnetic contrast agents for Magnetic Resonance Imaging and Spectroscopy

European Journal of Radiology, 2008

We provide a brief overview of the chemistry and most relevant properties of paramagnetic and diamagnetic contrast agents (CAs) for Magnetic Resonance Imaging and Magnetic Resonance Spectroscopic Imaging. Paramagnetic CAs for MRI consist mainly of Gd(III) complexes from linear or macrocyclic polyaminopolycarboxylates. These agents reduce, the relaxation times T(1) and T(2) of the water protons in a concentration dependent manner, increasing selectively MRI contrast in those regions in which they accumulate. In most instances they provide anatomical information on the localization of lesions and in some specific cases they may allow to estimate some physiological properties of tissues including mainly vascular performance. Because of its ability to discriminate easily between normal and diseased tissue, extracellular pH (pH(e)) has been added recently, to the battery of variables amenable to MRI investigation. A variety of Gd(III) containing macrocycles sensitive to pH, endogenous or exogenous polypeptides or even liposomes have been investigated for this purpose, using the pH dependence of their relaxivity or magnetization transfer rate constant (chemical exchange saturation transfer, CEST). Many environmental circumstances in addition to pH affect, however, relaxivity or magnetization transfer rate constants of these agents, making the results of pH measurements by MRI difficult to interpret. To overcome these limitations, our laboratory synthesized and developed a novel series of diamagnetic CAs for Magnetic Resonance Spectroscopic Imaging, a new family of monomeric and dimeric imidazolic derivatives able to provide unambiguous measurements of pH(e), independent of water relaxivity, diffusion or exchange.

Trends in NMR studies of paramagnetic Gd(III) complexes as potential contrast agents in MRI

Magnetic Resonance Imaging, 1991

The paramagnetic Gd(II1) complexes with polyaminocarboxylate ligands are intensively studied as possible Contrast Agents for Magnetic Resonance Imaging (M.R.I.). Their ability to enhance the solvent proton relaxation rate is mainly determined by the molecular reorientational time (T,&. In order to increase vR we studied the formation of non-covalent interactions between functionalized Gd(III)-complexes and micelles. The N.M.R.D. (Nuclear Magnetic Relaxation Dispersion) profiles of aqueous solutions of these paramagnetic complexes with hexadecyltrimetbylammonium bromide (CTABr) were measured and the results could be accounted for by difference in negative charge and number of hydrophobic aromatic residues among the different complexes.

Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations

Journal of Magnetic Resonance Imaging, 2002

Can gadolinium III [Gd(III)] complexes be considered good candidates for magnetic resonance (MR)-molecular imaging studies? In this review article, we examine the principal issues that are the basis of successful use of Gd-based protocols in molecular imaging applications. High relaxivity is the primary requisite. Therefore, the design of such paramagnetic probes has to be pursued keeping in mind the relationships between structure, dynamics, and the relevant parameters involved in paramagnetic relaxation processes. Moreover, the limited number of target molecules on cellular membranes makes it necessary to define strategies aimed at delivering many Gd-containing moieties to the sites of interest. Examples are reported for the attainment of very high relaxivities for the design of new routes for pursuing the accumulation of small sized Gd(III) complexes at the targeting sites. An efficient cellular uptake of Gd-containing probes is the key step for attaining the visualization of targeted cells by MR imaging, and selected examples are reported. In this context, the problem of the assessment of the minimum amount of Gd(III) complexes necessary for the MR imaging-visualization of cells has been addressed by reporting the authors' observations on the cell-internalization of Gd(III) complexes. A particularly efficient delivery system is represented by Gd-loaded apoferritin, which allows the MR visualization of hepatocytes when the number of Gd-complexes per cell is 4 Ϯ 1 ϫ 10 7 . Finally, the potential of responsive systems is considered by outlining the exploitation of the amplification effect brought about by the action of a specific enzymatic activity on the relaxivity of a suitably functionalized Gd(III) complex.

Using Two Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agents for Molecular Imaging Studies

Accounts of Chemical Research, 2009

R esponsive magnetic resonance imaging (MRI) contrast agents can change MR image contrast in response to a molecular biomarker. Quantitative detection of the biomarker requires an accounting of the other effects that may alter MR image contrast, such as a change in the agent's concentration, magnetic field variations, and hardware sensitivity profiles. A second unresponsive MRI contrast agent may serve as an "internal control" to isolate the detection of the molecular biomarker. Chemical exchange saturation transfer (CEST) MRI contrast agents can be selectively detected, providing the opportunity to combine a responsive CEST agent and an unresponsive CEST agent during the same MRI scan session. When two CEST MRI contrast agents are used for molecular imaging applications, the CEST agents should be designed to maximize accurate quantification of the concentrations of the two agents. From a chemical perspective, CEST agents behave like enzymes that catalyze the conversion of an unsaturated water "substrate" into a saturated water "product". The analysis of CEST agent kinetics parallels the Michaelis-Menten analysis of enzyme kinetics, which can be used to correlate the CEST effect with the concentration of the agent in solution. If the concentration of water "substrate" that is available to the CEST agent is unknown, which may be likely for in vivo MRI studies, then only a ratio of concentrations of the two CEST agents can be measured. In both cases, CEST agents should be designed with minimal T 1 relaxivity to improve concentration quantifications. CEST agents can also be designed to maximize sensitivity. This may be accomplished by incorporating many CEST agents within nanoparticles to create a large number of exchangeable protons per nanoparticle. Finally, CEST agents can be designed with rapid detection in mind. This may be accomplished by minimizing T 1 relaxivity of the CEST agent so that MRI acquisition methods have time to collect many MRI signals following a single selective saturation period. In this Account, we provide an example that shows the sensitive and rapid detection of two CEST agents in an in vivo MRI study of a mouse model of mammary carcinoma. The ratio of the concentrations of the two CEST agents was quantified with analysis methods that parallel Michaelis-Menten enzyme kinetic analysis. This example demonstrates current limitations of the method that require additional research, but it also shows that two CEST MRI contrast agents can be detected and quantitatively assessed during in vivo molecular imaging studies.

Paramagnetic Lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications

Magnetic Resonance in Medicine, 2002

The recently introduced new class of contrast agents (CAs) based on chemical exchange saturation transfer (CEST) may have a huge potential for the development of novel applications in the field of MRI. In this work we explored the CEST properties of a series of Lanthanide(III) complexes (Ln ‫؍‬ Eu, Dy, Ho, Er, Tm, Yb) with the macrocyclic DOTAM-Gly ligand, which is the tetraglycineamide derivative of DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). These complexes possess two pools of exchangeable protons represented by the coordinated water and the amide protons. Yb-DOTAM-Gly displays the most interesting CEST properties when its amide N-H resonance (16 ppm upfield H 2 O signal) is irradiated. Up to 70% suppression of the water signal is obtained at pH 8. As the exchange rate of amide protons is base-catalyzed, Yb-DOTAM-Gly results to be an efficient pH-responsive probe in the 5.5-8.1 pH range. Moreover, a ratiometric method has been set up in order to remove the dependence of the observed pH responsiveness from the absolute concentration of the paramagnetic agent. In fact, the use of a mixture of Eu-DOTAM-Gly and Yb-DOTAM-Gly, whose exchangeable proton pools are represented by the coordinated water (ca. 40 ppm downfield H 2 O signal at 312K) and amide protons, respectively, produces a pH-dependent CEST effect which is the function of the concentration ratio of the two complexes. Magn Reson Med 47: 639-648, 2002.