Evolving paradigms in biological carbon cycling in the ocean (original) (raw)

2018, National Science Review

Carbon is a keystone element in global biogeochemical cycles. It plays a fundamental role in biotic and abiotic processes in the ocean, which intertwine to mediate the chemistry and redox status of carbon in the ocean and the atmosphere. The interactions between abiotic and biogenic carbon (e.g. CO2, CaCO3, organic matter) in the ocean are complex, and there is a half-century-old enigma about the existence of a huge reservoir of recalcitrant dissolved organic carbon (RDOC) that equates to the magnitude of the pool of atmospheric CO2. The concepts of the biological carbon pump (BCP) and the microbial loop (ML) shaped our understanding of the marine carbon cycle. The more recent concept of the microbial carbon pump (MCP), which is closely connected to those of the BCP and the ML, explicitly considers the significance of the ocean's RDOC reservoir and provides a mechanistic framework for the exploration of its formation and persistence. Understanding of the MCP has benefited from a...

Mixing it up in the ocean carbon cycle and the removal of refractory dissolved organic carbon

Scientific reports, 2018

A large quantity of reduced carbon is sequestered in the ocean as refractory dissolved molecules that persist through several circuits of global overturning circulation. Key aspects of the cycling of refractory dissolved organic carbon (DOC) remain unknown, making it challenging to predict how this large carbon reservoir will respond to climate change. Herein we investigate mechanisms that remove refractory DOC using bioassay experiments with DOC isolated from surface, mesopelagic and deep waters of the Atlantic Ocean. The isolated DOC was refractory to degradation by native microbial communities, even at elevated concentrations. However, when the refractory DOC was introduced to a series of novel environmental conditions, including addition of a labile substrate, a microbial community from coastal waters and exposure to solar radiation, a substantial fraction (7-13%) was removed within 1.5 years. Our results suggest that while refractory molecules can persist in the ocean for mille...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.