Intermediate-term memory in Aplysia involves neurotrophin signaling, transcription, and DNA methylation (original) (raw)

2018, Learning & Memory

Long-term but not short-term memory and synaptic plasticity in many brain areas require neurotrophin signaling, transcription, and epigenetic mechanisms including DNA methylation. However, it has been difficult to relate these cellular mechanisms directly to behavior because of the immense complexity of the mammalian brain. To address that problem, we and others have examined numerically simpler systems such as the hermaphroditic marine mollusk Aplysia californica. As a further simplification, we have used a semi-intact preparation of the Aplysia siphon withdrawal reflex in which it is possible to relate cellular plasticity directly to behavioral learning. We find that inhibitors of neurotrophin signaling, transcription, and DNA methylation block sensitization and classical conditioning beginning ∼1 h after the start of training, which is in the time range of an intermediate-term stage of plasticity that combines elements of short- and long-term plasticity and may form a bridge betw...

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact