Investigations on the Spin States of Two Mononuclear Iron(II) Complexes Based on N-Donor Tridentate Schiff Base Ligands Derived from Pyridine-2,6-Dicarboxaldehyde (original) (raw)

Iron(II)-Schiff base complexes are a well-studied class of spin-crossover (SCO) active species due to their ability to interconvert between a paramagnetic high spin-state (HS, S = 2, 5T2) and a diamagnetic low spin-state (LS, S = 0, 1A1) by external stimuli under an appropriate ligand field. We have synthesized two mononuclear FeII complexes, viz., [Fe(L1)2](ClO4)2.CH3OH (1) and [Fe(L2)2](ClO4)2.2CH3CN (2), from two N6–coordinating tridentate Schiff bases derived from 2,6-bis[(benzylimino)methyl]pyridine. The complexes have been characterized by elemental analysis, electrospray ionization–mass spectrometry (ESI-MS), Fourier-transform infrared spectroscopy (FTIR), solution state nuclear magnetic resonance spectroscopy, 1H and 13C NMR (both theoretically and experimentally), single-crystal diffraction and magnetic susceptibility studies. The structural, spectroscopic and magnetic investigations revealed that 1 and 2 are with Fe–N6 distorted octahedral coordination geometry and remain ...

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact