Diversity and Biogeography of Human Oral Saliva Microbial Communities Revealed by the Earth Microbiome Project (original) (raw)

Defining the healthy "core microbiome" of oral microbial communities

BMC Microbiology, 2009

Background: Most studies examining the commensal human oral microbiome are focused on disease or are limited in methodology. In order to diagnose and treat diseases at an early and reversible stage an indepth definition of health is indispensible. The aim of this study therefore was to define the healthy oral microbiome using recent advances in sequencing technology (454 pyrosequencing).

Core of the saliva microbiome: an analysis of the MG-RAST data

BMC Oral Health, 2021

Background Oral microbiota is considered as the second most complex in the human body and its dysbiosis can be responsible for oral diseases. Interactions between the microorganism communities and the host allow establishing the microbiological proles. Identifying the core microbiome is essential to predicting diseases and changes in environmental behavior from microorganisms. Methods Projects containing the term “SALIVA”, deposited between 2014 and 2019 were recovered on the MG-RAST portal. Quality (Failed), taxonomic prediction (Unknown and Predicted), species richness (Rarefaction), and species diversity (Alpha) were analyzed according to sequencing approaches (Amplicon sequencing and Shotgun metagenomics). All data were checked for normality and homoscedasticity. Metagenomic projects were compared using the Mann–Whitney U test and Spearman's correlation. Microbiome cores were inferred by Principal Component Analysis. For all statistical tests, p < 0.05 was used. Results T...

Inter-personal diversity and temporal dynamics of dental, tongue, and salivary microbiota in the healthy oral cavity

NPJ biofilms and microbiomes, 2017

Oral microbes form a complex and dynamic biofilm community, which is subjected to daily host and environmental challenges. Dysbiosis of the oral biofilm is correlated with local and distal infections and postulating a baseline for the healthy core oral microbiota provides an opportunity to examine such shifts during the onset and recurrence of disease. Here we quantified the daily, weekly, and monthly variability of the oral microbiome by sequencing the largest oral microbiota time-series to date, covering multiple oral sites in ten healthy individuals. Temporal dynamics of salivary, dental, and tongue consortia were examined by high-throughput 16S rRNA gene sequencing over 90 days, with four individuals sampled additionally 1 year later. Distinct communities were observed between dental, tongue, and salivary samples, with high levels of similarity observed between the tongue and salivary communities. Twenty-six core OTUs that classified within Streptococcus, Fusobacterium, Haemophi...

The Influences of Bioinformatics Tools and Reference Databases in Analyzing the Human Oral Microbial Community

Genes

There is currently no criterion to select appropriate bioinformatics tools and reference databases for analysis of 16S rRNA amplicon data in the human oral microbiome. Our study aims to determine the influence of multiple tools and reference databases on α-diversity measurements and β-diversity comparisons analyzing the human oral microbiome. We compared the results of taxonomical classification by Greengenes, the Human Oral Microbiome Database (HOMD), National Center for Biotechnology Information (NCBI) 16S, SILVA, and the Ribosomal Database Project (RDP) using Quantitative Insights Into Microbial Ecology (QIIME) and the Divisive Amplicon Denoising Algorithm (DADA2). There were 15 phyla present in all of the analyses, four phyla exclusive to certain databases, and different numbers of genera were identified in each database. Common genera found in the oral microbiome, such as Veillonella, Rothia, and Prevotella, are annotated by all databases; however, less common genera, such as B...

Study of inter- and intra-individual variations in the salivary microbiota

BMC Genomics, 2010

Background: Oral bacterial communities contain species that promote health and others that have been implicated in oral and/or systemic diseases. Culture-independent approaches provide the best means to assess the diversity of oral bacteria because most of them remain uncultivable.

Bacterial diversity in the oral cavity of 10 healthy individuals

The ISME …, 2010

The composition of the oral microbiota from 10 individuals with healthy oral tissues was determined using culture-independent techniques. From each individual, 26 specimens, each from different oral sites at a single point in time, were collected and pooled. An 11th pool was constructed using portions of the subgingival specimens from all 10 individuals. The 16S ribosomal RNA gene was amplified using broad-range bacterial primers, and clone libraries from the individual and subgingival pools were constructed. From a total of 11 368 high-quality, nonchimeric, near full-length sequences, 247 species-level phylotypes (using a 99% sequence identity threshold) and 9 bacterial phyla were identified. At least 15 bacterial genera were conserved among all 10 individuals, with significant interindividual differences at the species and strain level. Comparisons of these oral bacterial sequences with near full-length sequences found previously in the large intestines and feces of other healthy individuals suggest that the mouth and intestinal tract harbor distinct sets of bacteria. Co-occurrence analysis showed significant segregation of taxa when community membership was examined at the level of genus, but not at the level of species, suggesting that ecologically significant, competitive interactions are more apparent at a broader taxonomic level than species. This study is one of the more comprehensive, high-resolution analyses of bacterial diversity within the healthy human mouth to date, and highlights the value of tools from macroecology for enhancing our understanding of bacterial ecology in human health.

Diversity of the oral microbiome between dentate and edentulous individuals

Oral Diseases, 2019

BackgroundMeasurement of saliva microbes is promoted as a way to detect oral and systemic disease, yet there is a multitude of factors that affect the oral microbiome. The salivary microbiome is influenced by oral biofilm of shedding (epithelial) and non‐shedding (tooth) surfaces.MethodsTo gauge the ability of salivary microbial analytics to distinguish between edentulous and dentate oral conditions, we looked for differences in the saliva microbiome of subjects with and without teeth. Fifty‐two dentate and 49 edentulous subjects provided stimulated saliva samples. 16S rRNA gene sequencing, QIIME‐based data processing, and statistical analysis were done using several different analytical approaches to detect differences in the salivary microbiome between the two groups.ResultsBacteria diversity was lower in the edentulous group. Remarkably, all 31 of the most significant differences in taxa were deficits that occur in the edentulous group. As one might expect many of these taxa are ...

Metaproteomics analysis of microbial diversity of human saliva and tongue dorsum in young healthy individuals

Journal of Oral Microbiology

Background: The human oral microbiome influences initiation or progression of diseases like caries or periodontitis. Metaproteomics approaches enable the simultaneous investigation of microbial and host proteins and their interactions to improve understanding of oral diseases. Objective: In this study, we provide a detailed metaproteomics perspective of the composition of salivary and tongue microbial communities of young healthy subjects. Design: Stimulated saliva and tongue samples were collected from 24 healthy volunteers, subjected to shotgun nLC-MS/MS and analyzed by the Trans-Proteomic Pipeline and the Prophane tool. Results: 3,969 bacterial and 1,857 human proteins could be identified from saliva and tongue, respectively. In total, 1,971 bacterial metaproteins and 1,154 human proteins were shared in both sample types. Twice the amount of bacterial metaproteins were uniquely identified for the tongue dorsum compared to saliva. Overall, 107 bacterial genera of seven phyla formed the microbiome. Comparative analysis identified significant functional differences between the microbial biofilm on the tongue and the microbiome of saliva. Conclusion: Even if the microbial communities of saliva and tongue dorsum showed a strong similarity based on identified protein functions and deduced bacterial composition, certain specific characteristics were observed. Both microbiomes exhibit a great diversity with seven genera being most abundant.

Enhanced microbial diversity in the saliva microbiome induced by short-term probiotic intake revealed by 16S rRNA sequencing on the IonTorrent PGM platform

Journal of Biotechnology, 2014

Microbial communities populating several human body habitats are important determinants of human health. Cultivation-free community-wide approaches like bacterial 16S rRNA sequencing recently revolutionized the study of such human-associated microbial diversity, and the continuously decreasing cost/throughput ratio of current sequencing platforms is further enhancing the availability and effectiveness of microbiome research. The IonTorrent PGM platform is among the latest available commercial high-throughput sequencing tools, but it is just starting to be used for 16S rRNA surveys with only episodic assessments of its performance. We present here the first IonTorrent profiling of the human saliva microbiome collected from 12 healthy individuals. In this cohort, a subset of the volunteers was asked to assume a probiotic product, in order to investigate its impact on the composition and the structure of the saliva microbiome. Analysis of the generated dataset suggests the suitability of the IonTorrent platform for 16S rRNA surveys, even though some platform-specific choices are required to optimize the consistency of the obtained bacterial profiles. Interestingly, we found a marked and statistically significant increase of the overall bacterial diversity in the saliva of individuals who received the probiotic product compared to the control group, suggesting a short-term effect of probiotic product administration on oral microbiome composition.