Distribution of gustatory receptors and their co-expression with FMRFamide-related peptides in enteroendocrine cells and neurosecretory cells of larvae of the silkworm bombyx mori (original) (raw)

Abstract

Insects taste nonvolatile chemicals through gustatory receptors (Grs) and make choices for feeding, mating, and oviposition. To date, genome projects have identified 69 Gr genes in the silkworm, Bombyx mori. However, the expression sites of these Grs remain to be explored. In the Chapter 1, I explored expression cells of BmGr6. I used reverse transcription-polymerase chain reaction (RT-PCR) to investigate expression of the B. mori Gr-6 (BmGr6) gene, a member of the putative sugar clade gene family in various tissues. BmGr6 was expressed in the midgut, central nervous system, and oral sensory organs. Immunohistochemistry using an anti-BmGr6 antiserum demonstrated that BmGr6 is expressed in cells of the antenna, labrum, maxillary galea, maxillary palps, and labium of the oral sensory organs. Furthermore, immunohistochemistry showed that BmGr6 is expressed in putative midgut enteroendocrine cells and in cells of the central nervous system including putative neurosecretory cells of the brain and ganglia. These results demonstrated that BmGr6 is widely expressed in both gustatory and non-gustatory organs. In the Chapter 2, I clarified whether BmGr6-expressing cells are midgut enteroendocrine cells and CNS neurosecretory cells. Double-immunohistochemistry indicated that BmGr6 is expressed in midgut enteroendocrine cells, also in CNS neurosecretory cells. In particular, a portion of BmGr6-expressing cells, in both midgut and CNS, secreting FMRFamide-related peptides (FaRPs). These results 7 showed that BmGr53 is expressed in cells of the brain, suggesting that BmGr53 may play roles in modulating feeding behavior or physiological homeostasis.

Figures (48)

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (79)

  1. DmGr64b, AAN11577; DmGr64a, AAN11576; DmGr61a, CBA14269; DmGr64c, CBA14213; DmGr64d, AAS64968; DmGr43a, NP_001286158; HaGr4 (HarmGR4, Jiang et al., 2015), JX982536; DmGr66a, AAF50447; and BmGr68, NP_001233217.
  2. BmGr6-expressing cells (Figs. 3.6 A and 3.12 B). These results demonstrated that most of BmGr9-expressing neurosecretory cells in the brain also express BmGr6. Apart from the brain, it is intriguing to note that almost all BmGr9-expressing cells also express BmGr6 in the frontal ganglion (FG) (Fig. 3.12 C) which constitutes a major source of innervation to foregut muscles and plays a key role in the control of foregut movements (Ayali, 2004). the lateral (A) and medial (B, arrows) regions. (C) Co-localization of
  3. BmGr9-expressing cells and anti-DmNPF-stained cells in the abdominal ganglion (AG) 8. Scale bars = 50 μm. References
  4. Abdel-Latief, M., 2007. A family of chemoreceptors in Tribolium castaneum (Tenebrionidae: Coleoptera). PloS One 2, 31319.
  5. Adler, E., Hoon, M.A., Mueller, K.L., Chandrashekar, J., Ryba, N.J.P., Zuker, C.S., 2000. A novel family of mammalian taste receptors. Cell 100, 693-702.
  6. Albert, P.J., 1980. Morphology and innervation of mouthpart sensilla in larvae of the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Can. J. Zool. 58, 842-851.
  7. Apostolopoulou, A.A., Mazija, l., Wüst, A., Thum, A.S., 2014. The neuronal and molecular basis of quinine-dependent bitter taste signaling in Drosophila larvae. Front Behav. Neurosci. 8, 1-11.
  8. Asaoka, K., Shibuya, T., 1995. Morphological and electrophysiological characteristics of the epipharyngeal sensilla of the silkworm, Bombyx mori. Entomol. Exp. Appl. 77, 167-176.
  9. Ayali, A., Zilberstein, Y., Cohen, N., 2002. The locust frontal ganglion: a central pattern generator network controlling foregut rhythmic motor patterns. J. Exp. Biol. 205, 2825-2832.
  10. Bray, S., Amrein, H., 2003. A putative Drosophila pheromone receptor expressed in male specific taste neurons is required for efficient courtship. Neuron 39, 1019- 1029.
  11. Breer, H., Eberle, J., Frick, C., Haid, D., Widmayer, P., 2012. Gastrointestinal chemosensation: chemosensory cells in the alimentary tract. Histochem. Cell Biol. 138, 13-24.
  12. Chandrashekar,. J, Mueller, K.L., Hoon, M.A., Adler, E., Feng, L., Guo, W., Zuker, C.S., Ryba, N.J, 2000. T2Rs function as bitter taste receptors. Cell 100, 703-711.
  13. Chen, M.C., Wu, S.V., Reeve, J.R., Rozengurt, E., 2006. Bitter stimuli induce Ca 2+ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive Ca 2+ channels. Am J Physiol Cell Physiol 291, C726-739.
  14. Chen, Y.C., 2015. The Interactions between Bitter and Sweet Taste Processing in Drosophila. The Journal of Neuroscience, 35, 9542-9543.
  15. Chiori, R., Jager, M., Denker, E., Wincker, P., Da Silva, C., Guyader, H. L., Manuel, M., Quéinnec, E., 2009. Are Hox genes ancestrally involved in axial patterning? Evidence from the hydrozoan Clytia hemisphaerica (Cnidaria). PLoS One 4, e4231.
  16. Clyne, P.J., Warr, C.G., Carlson, J.R., 2000. Candidate taste receptors in Drosophila. Science 287, 1830-1834.
  17. Dahanukar, A., Lei, Y.T., Kwon, J.Y., Carlson, J.R., 2007. Two Gr genes underlie sugar reception in Drosophila. Neuron 56, 503-516.
  18. Davey, M., Duve, H., Thorpe, A., Eastl, P., 2005. Helicostatins: brain-gut peptides of the moth, Helicoverpa armigera (Lepidoptera: Noctuidae). Arch. Insect Biochem. Physiol. 58, 1-16.
  19. Descoins, C., Marion-Poll, F., 1999. Electrophysiological responses of gustatory sensilla of Mamestra brassicae (Lepidoptera, Noctuidae) larvae to three ecdysteroids: ecdysone, 20-hydroxyecdysone and ponasterone A. J. Insect Physiol. 45, 871-876.
  20. Dunipace, L., Meister S., McNealy C., Amrein H., 2001. Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system. Curr. Biol. 11, 822-835.
  21. Duve, H., East, P.D., Thorpe, A., 1999. Regulation of lepidopteran foregut movement by allatostatins and allatotropin from the frontal ganglion. J. Comp. Neurol. 413, 405-416.
  22. Dyer, J., Salmon, K.S., Zibrik, L., Shirazi-Beechey, S.P., 2005. Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem Soc Trans. 33, 302-305.
  23. Dyer, J., Salmon, K.S.H., Zibrik, L., Shirazi-Beechey, S.P., 2005. Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem. Soc. Trans. 33, 302-305.
  24. Fujii, S., Yavuz, A., Slone, J., Jagge, C., Song, X., Amrein, H., 2015. Drosophila sugar receptors in sweet taste perception, olfaction, and internal nutrient sensing. Curr. Biol. 25, 1-7.
  25. Garczynski, S.F., Brown, M.R., Shen, P., Murray, T.F., and Crim, J.W., 2002. Characterization of a functional neuropeptide F receptor from Drosophila melanogaster. Peptides 23, 773-780.
  26. Garczynski, S.F., Brown, M.R., Shen, P., Murray, T.F., Crim, J.W., 2002. Characterization of a functional neuropeptide F receptor from Drosophila melanogaster. Peptides 23, 773-80.
  27. Giordana, B., Leonardi, M.G., Casartelli, M., Consonni, P., Parenti, P., 1998.
  28. K + -neutral amino acid symport of Bombyx mori larval midgut: a system operative in extreme conditions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 274, R1361- R1371.
  29. Gullan, P.J., Cranston, P.S., 2005. The insects: an outline of entomology (4 ed.). Blackwell Publishing, pp. 60-63.
  30. Hartenstein, V., Takashima, S., Adams K.L., 2010. Conserved genetic pathways controlling the development of the diffuse endocrine system in vertebrates and Drosophila. Gen. Comp. Endocrinol 166, 462-469.
  31. Hill, C.A., Fox, A.N., Pitts, R.J., Kent, L.B., Tan, P.L., Chrystal, M.A., Cravchik, A., Collins, F.H., Robertson, H.M., and Zwiebel, L.J., 2002. G protein-coupled receptors in Anopheles gambiae. Science 298, 176-178.
  32. Hiroi, M., Marion-Poll, F., Tanimura, T., 2002. Differentiated response to sugars among labellar chemosensilla in Drosophila. Zoolog. Sci. 19, 1009-1018.
  33. Honeybee Genome Sequencing Consortium, 2006. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443, 931-949.
  34. Ichikawa, T., 1991. Architecture of cerebral neurosecretory cell systems in the silkworm Bombyx mori. J. Exp. Biol. 161, 217-237.
  35. Ishikawa, S., 1963. Responses of maxillary receptors in the larva of the silkworm, Bombyx mori, to stimulation by carbohydrates. J. Cell Comp. Physiol. 61, 99-107.
  36. Ishikawa, S., 1966. Electrical response and function of a bitter substance receptor associated with the maxillary sensilla of the larva of the silkworm, Bombyx mori L. J. Cell Comp. Physiol. 67, 1-11.
  37. Ishikawa, S., Hirao, T., 1963. Electrophysiological studies of taste sensation in the larvae of the silkworm, Bombyx mori. Responsiveness of sensilla styloconica on the maxilla. Bull. Seric. Exp. Sta. Japan 19, 297-357.
  38. Jager, M., Quéinnec, E., Guyader., H.L., Manuel, M., 2011.Multiple Sox genes are expressed in stem cells or in differentiating neuro-sensory cells in the hydrozoan Clytia hemisphaerica. Evodevo, 2,12.
  39. Jones, W.D., Cayirlioglu, P., Kadow, I.G., Vosshall, L.B., 2007. Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445, 86-90.
  40. Kent, L.B., Walden, K.K., Robertson, H.M., 2008. The Gr family of candidate gustatory and olfactory receptors in the yellow-fever mosquito Aedes aegypti. Chem. Senses 33, 79-93.
  41. Kwon, J.Y., Dahanukar, A., Weiss, L.A., Carlson, J.R., 2007. The molecular basis of CO2 reception in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 104, 3574-3578.
  42. Lemon, C.H., Margolskee, R.F., 2009. Contribution of the T1r3 taste receptor to the response properties of central gustatory neurons. Journal of neurophysiology 101, 2459-2471.
  43. López-Vera, E., Aguilar, M.B., Heimer de la Cotera, E.P., 2008. FMRFamide and related peptides in the phylum mollusca. Peptides 29, 310-317.
  44. Mace, O.J., Affleck, J., Patel, N., Kellett G.L., 2007. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J. Physiol. 582, 379- 392.
  45. Marella, S., Fischler, W., Kong, P., Asgarian, S., Rueckert, E., Scott, K., 2006. Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49, 285-295.
  46. Margolskee, R.F., Dyer, J., Kokrashvili, Z., Salmon, K.S., Ilegems, E., Daly, K., Maillet, E.L., Ninomiya, Y., Mosinger, B., and Shirazi-Beechey, S.P., 2007. T1R3 and gustducin in gut sense sugars to regulate expression of Na + -glucose cotransporter 1. Proc. Natl. Acad. Sci. U. S. A. 104, 15075-15080.
  47. Matsunami, H., Montmayeur, J.P., Buck, L.B., 2000. A family of candidate taste receptors in human and mouse. Nature 404, 601-604.
  48. Mishra, D., Miyamoto, T., Rezenom, Y.H., Broussard, A., Yavuz, A., Slone, J., Russell, D.H., Amrein, H., 2013. The molecular basis of sugar sensing in Drosophila larvae. Curr. Biol. 23, 1466e1471.
  49. Miyamoto, T., Amrein, H., 2014. Diverse roles for the Drosophila fructose sensor Gr43a. Fly 8, 19e25.
  50. Miyamoto, T., Slone, J., Song, X., Amrein, H., 2012. A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 151, 1113-1125.
  51. Montell, C., 2009. A taste of the Drosophila gustatory receptors. Curr. Opin. Neurobiol. 19, 345-353.
  52. Nässel, D.R., 1996. Neuropeptides, amines and amino acids in an elemenary insect ganglion: functional and chemical anatomy of the unfused abdominal ganglion. Prog. Neurobiol. 48, 325-420.
  53. Ni, L., Bronk, P., Chang, E.C., Lowell, A.M., Flam, J.O., Panzano,V.C., Theobald, D.L., Griffith, L.C., Garrity, P.A., 2013. A gustatory receptor paralogue controls rapid warmth avoidance in Drosophila. Nature 500, 580-584.
  54. Park, J.H., Kwon, J.Y., 2011a. A systematic analysis of Drosophila gustatory receptor gene expression in abdominal neurons which project to the central nervous system. Mol. Cells 32, 375-381.
  55. Park, J.H., Kwon, J.Y., 2011b. Heterogeneous expression of Drosophila gustatory receptors in enteroendocrine cells. PLoS One 6, e29022.
  56. Roller, L., Yamanaka, N., Watanabe, K., Daubnerová, I., itňan, D., Kataoka, H., Tanaka, Y., 2008. The unique evolution of neuropeptide genes in the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 38, 1147-1157.
  57. Sato, K., Tanaka, K., Touhara, K., 2011. Sugar regulated cation channel formed by an insect gustatory receptor. Proc. Natl. Acad. Sci. U. S. A. 108, 11680-11685.
  58. Schoonhoven, L.M., Van Loon, J.J.A., 2002. An inventory of taste in caterpillars: each species its own key. Acta Zool. Acad. Sci. Hung. 48, 215-263.
  59. Sclafani, A., 2007. Sweet taste signaling in the gut. Proc. Natl. Acad. Sci. U. S. A. 104, 14887-14888.
  60. Scott, K., 2005. Taste recognition: food for thought. Neuron 48, 455-464.
  61. Scott, K., Brady, R., Cravchik, A., Morozov, P., Rzhetsky, A., Zuker, C., Axel, R., 2001. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104, 661-673.
  62. Sehadová, H., Markova, E.P., Sehnal, F., Takeda, M., 2004. Distribution of circadian clock related proteins in the cephalic nervous system of the Silkworm, Bombyx mori. J. Biol. Rhythms 19, 466-482.
  63. Stainier, D.Y., 2005. No organ left behind: tales of gut development and evolution. Science 307, 1902-1904.
  64. Stanek, D,M., Pohl, J., Crim, J.W., Brown, M.R., 2002. Neuropeptide F and its expression in the yellow fever mosquito, Aedes aegypti. Peptides 23, 1367-1378.
  65. Suh, G.S.B., Wong, A.M., Hergarden, A.C., Wang, J.W., Simon, A.F, Benzer, S., Axel, R., Anderson, D.J., 2004. A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431, 854-859.
  66. Tanaka, Y., Asaoka, K., Takeda, S., 1994. Different feeding and gustatory responses to ecdysone and 20-hydroxyecdysone by larvae of the silkworm, Bombyx mori. J. Chem. Ecol. 20, 125-133.
  67. Thorne, N., Amrein, H., 2008. A typical expression of Drosophila gustatory receptor genes in sensory and central neurons. J. Comp. Neurol. 506, 548-568.
  68. Thorne, N., Chromey, C., Bray, S., Amrein, H., 2004. Taste perception and coding in Drosophila. Curr. Biol. 14, 1065-1079.
  69. Veenstra, J.A., Agricola, H.J., Sellami, A., 2008. Regulatory peptides in fruit fly midgut. Cell Tissue Res. 334, 499-516.
  70. Wang, Z., Singhvi, A., Kong, P., Scott, K., 2004. Taste representations in the Drosophila brain. Cell 117, 981-991.
  71. Wanner, K.W, Robertson, H.M., 2008. The gustatory receptor family in the silkworm moth Bombyx mori is characterized by a large expansion of a single lineage of putative bitter receptors. Insect Mol. Biol. 17, 621-629.
  72. Wu, Q., Wen, T., Lee, G., Park, J.H., Cai, H.N., and Shen, P., 2003. Develop-mental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron 39, 147-161.
  73. Wu, Q., Zhao, Z., and Shen, P., 2005. Regulation of aversion to noxious food by Drosophila neuropeptide Y-and insulin-like systems. Nat. Neurosci. 8, 1350-1355.
  74. Xiang, Y., Yuan, Q., Vogt, N., Looger, L.L., Jan, L.Y., Jan, Y.N., 2010. Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 468, 921-926.
  75. Yamanaka, N., Hua Y.J., Roller, L., Spalovská-Valachová, I., Mizoguchi A., Kataoka H., Tanaka. Y., 2009. Bombyx prothoracicostatic peptides activate the sex peptide receptor to regulate ecdysteroid biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 107, 2060-2065.
  76. Yamanaka. N., Hua, Y.J., Mizoguchi, A., Watanabe, K., Niwa, R., Tanaka, Y., Kataoka, H., 2005. Identification of a novel prothoracicostatic hormone and its receptor in the silkworm Bombyx mori. J. Biol. Chem. 280, 14684-14690.
  77. Yamanaka. N., itňan, D., Kim. Y.J., Adams. M.E., Hua. Y.J., Suzuki. Y., Suzuki. M., Suzuki. A., Satake. H., Mizoguchi. A., Asaoka. K., Tanaka. Y., Kataoka. H., 2006. Regulation of insect steroid hormone biosynthesis by innervating peptidergic neurons. Proc. Natl. Acad. Sci. U. S. A. 103, 8622-8627.
  78. Yoshizawa, Y., Sato, R., Tsuchihara, K., Ozaki, K., Mita, K., Asaoka, K., Taniai, K., 2011. Ligand carrier protein genes expressed in larval chemosensory of Bombyx mori. Insect Biochem. Mol. Biol. 41, 545-562.
  79. Zhang, H.J., Anderson, A.R., Trowell, S.C., Luo, A.R., Xiang, Z.H., Xia, Q.Y., 2011. Topological and functional characterization of an insect gustatory receptor. PLoS One 6, e24111.