Existence of solutions of degenerate semilinear elliptic boundary value problems (original) (raw)
Abstract
We show an existence of a weak solution of a degenerate and/or singular semilinear elliptic boundary value (nonhomogeneous) problem lying between a given weak subsolution and a given weak supersolution. It has been applied for an existence result of large solution to a similar problem.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (12)
- Raj Narayan Dhara and Agnieszka Kałamajska. On equivalent conditions for the validity of poincaré inequality on weighted sobolev space with applications to the solvability of degenerated pdes involving p-laplacian. Journal of Mathematical Analysis and Applications, 432(1):463-483, 2015. 3
- Raj Narayan Dhara and Agnieszka Kałamajska. On one extension theorem dealing with weighted orlicz-slobodetskii space. analysis on lipschitz subgraph and lipschitz domain. Math. Inequal. Appl, 19(2):451-488, 2016. 2, 3
- J. Heinonen, T. Kilpeläinen, and O. Martio. Nonlinear Potential Theory of Degenerate Elliptic Equa- tions. Dover Books on Mathematics. Dover Publications, 2012. 3
- PETER HESS. On the solvability of nonlinear elliptic boundary value problems. Indiana University Mathematics Journal, 25(5):461-466, 1976. 1
- Pekka Koskela, Tomás Soto, and Zhuang Wang. Traces of weighted function spaces: dyadic norms and Whitney extensions. Sci. China Math., 60(11):1981-2010, 2017. 2, 3
- Alois Kufner and Bohumír Opic. How to define reasonably weighted sobolev spaces. Commentationes Mathematicae Universitatis Carolinae, 25(3):537-554, 1984. 2, 3
- J.L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires [par] J.L. Lions. Etudes mathématiques. Dunod, 1969. 5
- Julián López-Gómez. The boundary blow-up rate of large solutions. J. Differential Equations, 195(1):25-45, 2003. 6
- Petru Mironescu and Emmanuel Russ. Traces of weighted Sobolev spaces. Old and new. Nonlinear Anal., 119:354-381, 2015. 2, 3
- Johanna Schoenenberger-Deuel and Peter Hess. A criterion for the existence of solutions of non-linear elliptic boundary value problems. Proc. Roy. Soc. Edinburgh Sect. A, 74:49-54 (1976), 1974/75. 1, 6
- A. I. Tyulenev. Description of traces of functions in the Sobolev space with a Muckenhoupt weight. Proc. Steklov Inst. Math., 284(1):280-295, 2014. Translation of Tr. Mat. Inst. Steklova 284 (2014), 288-303. 2, 3
- E. Zeidler and L.F. Boron. Nonlinear Functional Analysis and its Applications: II/B: Nonlinear Monotone Operators. Springer New York, 2013. 5