Existence of solutions of degenerate semilinear elliptic boundary value problems (original) (raw)

Abstract

We show an existence of a weak solution of a degenerate and/or singular semilinear elliptic boundary value (nonhomogeneous) problem lying between a given weak subsolution and a given weak supersolution. It has been applied for an existence result of large solution to a similar problem.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (12)

  1. Raj Narayan Dhara and Agnieszka Kałamajska. On equivalent conditions for the validity of poincaré inequality on weighted sobolev space with applications to the solvability of degenerated pdes involving p-laplacian. Journal of Mathematical Analysis and Applications, 432(1):463-483, 2015. 3
  2. Raj Narayan Dhara and Agnieszka Kałamajska. On one extension theorem dealing with weighted orlicz-slobodetskii space. analysis on lipschitz subgraph and lipschitz domain. Math. Inequal. Appl, 19(2):451-488, 2016. 2, 3
  3. J. Heinonen, T. Kilpeläinen, and O. Martio. Nonlinear Potential Theory of Degenerate Elliptic Equa- tions. Dover Books on Mathematics. Dover Publications, 2012. 3
  4. PETER HESS. On the solvability of nonlinear elliptic boundary value problems. Indiana University Mathematics Journal, 25(5):461-466, 1976. 1
  5. Pekka Koskela, Tomás Soto, and Zhuang Wang. Traces of weighted function spaces: dyadic norms and Whitney extensions. Sci. China Math., 60(11):1981-2010, 2017. 2, 3
  6. Alois Kufner and Bohumír Opic. How to define reasonably weighted sobolev spaces. Commentationes Mathematicae Universitatis Carolinae, 25(3):537-554, 1984. 2, 3
  7. J.L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires [par] J.L. Lions. Etudes mathématiques. Dunod, 1969. 5
  8. Julián López-Gómez. The boundary blow-up rate of large solutions. J. Differential Equations, 195(1):25-45, 2003. 6
  9. Petru Mironescu and Emmanuel Russ. Traces of weighted Sobolev spaces. Old and new. Nonlinear Anal., 119:354-381, 2015. 2, 3
  10. Johanna Schoenenberger-Deuel and Peter Hess. A criterion for the existence of solutions of non-linear elliptic boundary value problems. Proc. Roy. Soc. Edinburgh Sect. A, 74:49-54 (1976), 1974/75. 1, 6
  11. A. I. Tyulenev. Description of traces of functions in the Sobolev space with a Muckenhoupt weight. Proc. Steklov Inst. Math., 284(1):280-295, 2014. Translation of Tr. Mat. Inst. Steklova 284 (2014), 288-303. 2, 3
  12. E. Zeidler and L.F. Boron. Nonlinear Functional Analysis and its Applications: II/B: Nonlinear Monotone Operators. Springer New York, 2013. 5