Robotic hand illusion with tactile feedback: Unravelling the relative contribution of visuotactile and visuomotor input to the representation of body parts in space (original) (raw)
Related papers
Rubber Hand Illusion: Evidence for a multisensory integration of proprioception
Avances en Psicología Latinoamericana, 2017
This review seeks to describe a multisensory integration hypothesis for proprioception through the description of different Rubber Hand Illusion (rhi) experimental settings. rhi is a paradigm created in 1998 to explore the relation between visual and tactile sensory systems. The task involves a synchronous stroking, using a paintbrush, of one of a subject's hands occluded from his vision, and a prosthetic rubber hand located in front of the subject. Instructed to look at the rubber hand, the subject starts to feel as if the rubber hand is his own hand after approximately half a minute, which is to say that the illusion produces a feeling of ownership of the rubber hand. Additional research over the last 15 years has widely explored these results, illustrating the dynamic functions of the brain and body sensory systems, as well as shedding light on the bases of amputee rehabilitation and different types of paresthesia. The review is structured around three topics: (1) the definition, limits, and scope of rhi; (2) the physiological and neurocognitive evidence backing rhi; and (3) the use of action based rhi experimental settings. The paper concludes that rhi is a salient example of a neuroscientific trend towards an integrated account of body, brain, and perceptual space. The discovery of the illusion has also provided an alternative context for the study of proprioception and related brain dynamics in normal subjects.
The robot hand illusion: Inducing proprioceptive drift through visuo-motor congruency
Neuropsychologia, 2015
The representation of one's own body sets the border of the self, but also shapes the space where we interact with external objects. Under particular conditions, such as in the rubber hand illusion external objects can be incorporated in one's own body representation, following congruent visuo-tactile stroking of one's own and a fake hand. This procedure induces an illusory sense of ownership for the fake hand and a shift of proprioceptive localization of the own hand towards the fake hand. Here we investigated whether pure visuo-motor, instead of visuo-tactile, congruency between one's own hand and a detached myoelectric-controlled robotic hand can induce similar embodiment effects. We found a shift of proprioceptive hand localization toward the robot hand, only following synchronized real hand/robot hand movements. Notably, no modulation was found of the sense of ownership following either synchronous or asynchronous-movement training. Our findings suggest that visuo-motor synchrony can drive the localization of one's own body parts in space, even when somatosensory input is kept constant and the experience of body ownership is maintained.
Virtual hand illusion induced by visuomotor correlations
PloS one, 2010
Background: Our body schema gives the subjective impression of being highly stable. However, a number of easily-evoked illusions illustrate its remarkable malleability. In the rubber-hand illusion, illusory ownership of a rubber-hand is evoked by synchronous visual and tactile stimulation on a visible rubber arm and on the hidden real arm. Ownership is concurrent with a proprioceptive illusion of displacement of the arm position towards the fake arm. We have previously shown that this illusion of ownership plus the proprioceptive displacement also occurs towards a virtual 3D projection of an arm when the appropriate synchronous visuotactile stimulation is provided. Our objective here was to explore whether these illusions (ownership and proprioceptive displacement) can be induced by only synchronous visuomotor stimulation, in the absence of tactile stimulation.
Combined induction of rubber-hand illusion and out-of-body experiences
The emergence of self-consciousness depends on several processes: those of body ownership, attributing self-identity to the body, and those of self-location, localizing our sense of self. Studies of phenomena like the rubber-hand illusion (RHi) and out-of-body experience (OBE) investigate these processes, respectively for representations of a body-part and the full-body. It is supposed that RHi only target processes related to body-part representations, while OBE only relates to full-body representations. The fundamental question whether the body-part and the full-body illusions relate to each other is nevertheless insufficiently investigated. In search for a link between body-part and full-body illusions in the brain we developed a behavioral task combining adapted versions of the RHi and OBE. Furthermore, for the investigation of this putative link we investigated the role of sensory and motor cues. We established a spatial dissociation between visual and proprioceptive feedback of a hand perceived through virtual reality in rest or action.Two experimental measures were introduced: one for the body-part illusion, the proprioceptive drift of the perceived localization of the hand, and one for the full-body illusion, the shift in subjective-straightahead (SSA). In the rest and action conditions it was observed that the proprioceptive drift of the left hand and the shift in SSA toward the manipulation side are equivalent. The combined effect was dependent on the manipulation of the visual representation of body parts, rejecting any main or even modulatory role for relevant motor programs. Our study demonstrates for the first time that there is a systematic relationship between the body-part illusion and the full-body illusion, as shown by our measures. This suggests a link between the representations in the brain of a body-part and the full-body, and consequently a common mechanism underpinning both forms of ownership and self-location.
Experimental Brain Research
Recent evidence suggests that imagined auditory and visual sensory stimuli can be integrated with real sensory information from a different sensory modality to change the perception of external events via cross-modal multisensory integration mechanisms. Here, we explored whether imagined voluntary movements can integrate visual and proprioceptive cues to change how we perceive our own limbs in space. Participants viewed a robotic hand wearing a glove repetitively moving its right index finger up and down at a frequency of 1 Hz, while they imagined executing the corresponding movements synchronously or asynchronously (kinesthetic-motor imagery); electromyography (EMG) from the participants’ right index flexor muscle confirmed that the participants kept their hand relaxed while imagining the movements. The questionnaire results revealed that the synchronously imagined movements elicited illusory ownership and a sense of agency over the moving robotic hand—the moving rubber hand illusi...
The Rubber Hand Illusion: body ownership and spatial updating do not go hand in hand
PLoS ONE
In the Rubber Hand Illusion, the feeling of ownership of a rubber hand displaced from a participant's real occluded hand is evoked by synchronously stroking both hands with paintbrushes. A change of perceived finger location towards the rubber hand (proprioceptive drift) has been reported to correlate with this illusion. To measure the time course of proprioceptive drift during the Rubber Hand Illusion, we regularly interrupted stroking (performed by robot arms) to measure perceived finger location. Measurements were made by projecting a probe dot into the field of view (using a semi-transparent mirror) and asking participants if the dot is to the left or to the right of their invisible hand (Experiment 1) or to adjust the position of the dot to that of their invisible hand (Experiment 2). We varied both the measurement frequency (every 10 s, 40 s, 120 s) and the mode of stroking (synchronous, asynchronous, just vision). Surprisingly, with frequent measurements, proprioceptive drift occurs not only in the synchronous stroking condition but also in the two control conditions (asynchronous stroking, just vision). Proprioceptive drift in the synchronous stroking condition is never higher than in the just vision condition. Only continuous exposure to asynchronous stroking prevents proprioceptive drift and thus replicates the differences in drift reported in the literature. By contrast, complementary subjective ratings (questionnaire) show that the feeling of ownership requires synchronous stroking and is not present in the asynchronous stroking condition. Thus, subjective ratings and drift are dissociated. We conclude that different mechanisms of multisensory integration are responsible for proprioceptive drift and the feeling of ownership. Proprioceptive drift relies on visuoproprioceptive integration alone, a process that is inhibited by asynchronous stroking, the most common control condition in Rubber Hand Illusion experiments. This dissociation implies that conclusions about feelings of ownership cannot be drawn from measuring proprioceptive drift alone.
Scientific Reports
When subjects look at a rubber hand being brush-stroked synchronously with their own hidden hand, they might feel a sense of ownership over the rubber hand. The perceived mislocalization of the own hand towards the rubber hand (proprioceptive drift) would reflect an implicit marker of this illusion occurring through the dominance of vision over proprioception. This account, however, contrasts with principles of multisensory integration whereby percepts result from a "statistical sum" of different sensory afferents. In this case, the most-known proprioceptive drift should be mirrored by complementary visual drift of the rubber hand in the opposite direction. We investigated this issue by designing two experiments in which subjects were not only requested to localize their own hand but also the rubber hand and further explored the subjective feeling of the illusion. In both experiments, we demonstrated a (visual) drift in the opposite direction of the proprioceptive drift, suggesting that both hands converge toward each other. This might suggest that the spatial representations of the two hands are integrated in a common percept placed in between them, contradicting previous accounts of substitution of the real hand by the rubber hand.
Influence of the Body Schema on Multisensory Integration: Evidence from the Mirror Box Illusion
Scientific Reports, 2017
When placing one hand on each side of a mirror and making synchronous bimanual movements, the mirror-reflected hand feels like one's own hand that is hidden behind the mirror. We developed a novel mirror box illusion to investigate whether motoric, but not spatial, visuomotor congruence is sufficient for inducing multisensory integration, and importantly, if biomechanical constraints encoded in the body schema influence multisensory integration. Participants placed their hands in a mirror box in opposite postures (palm up, palm down), creating a conflict between visual and proprioceptive feedback for the hand behind the mirror. After synchronous bimanual hand movements in which the viewed and felt movements were motorically congruent but spatially in the opposite direction, participants felt that the hand behind the mirror rotated or completely flipped towards matching the hand reflection (illusory displacement), indicating facilitation of multisensory integration by motoric visuomotor congruence alone. Some wrist rotations are more difficult due to biomechanical constraints. We predicted that these biomechanical constraints would influence illusion effectiveness, even though the illusion does not involve actual limb movement. As predicted, illusory displacement increased as biomechanical constraints and angular disparity decreased, providing evidence that biomechanical constraints are processed in multisensory integration.