Photosynthetic apparatus of Rhodobacter sphaeroides exhibits prolonged charge storage (original) (raw)

Abstract

Photosynthetic proteins have been extensively researched for solar energy harvesting. Though the light-harvesting and charge-separation functions of these proteins have been studied in depth, their potential as charge storage systems has not been investigated to the best of our knowledge. Here, we report prolonged storage of electrical charge in multilayers of photoproteins isolated from Rhodobacter sphaeroides. Direct evidence for charge build-up within protein multilayers upon photoexcitation and external injection is obtained by Kelvinprobe and scanning-capacitance microscopies. Use of these proteins is key to realizing a 'selfcharging biophotonic device' that not only harvests light and photo-generates charges but also stores them. In strong correlation with the microscopic evidence, the phenomenon of prolonged charge storage is also observed in primitive power cells constructed from the purple bacterial photoproteins. The proof-of-concept power cells generated a photovoltage as high as 0.45 V, and stored charge effectively for tens of minutes with a capacitance ranging from 0.1 to 0.2 F m −2 .

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (58)

  1. Zazubovich, V. & Jankowiak, R. Biophotonics of photosynthesis. Photonics, Volume 4: Biomedical Photonics, Spectroscopy, and Microscopy, 129 (Hoboken, New Jersey, John Wiley & Sons, Inc., 2015).
  2. Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 3, 763-774 (2011).
  3. Croce, R. & van Amerongen, H. Natural strategies for photosynthetic light harvesting. Nat. Chem. Biol. 10, 492-501 (2014).
  4. Mirkovic, T., Ostroumov, E. E., Anna, J. M., van Grondelle, R. & Scholes, G. D. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 117, 249-293 (2016).
  5. Xue, X. et al. Flexible self-charging power cell for one-step energy conversion and storage. Adv. Energy Mater. 4, 1301329 (2014).
  6. Chen, T. et al. An integrated "energy wire" for both photoelectric conversion and energy storage. Angew. Chem. Int. Ed. 51, 11977-11980 (2012).
  7. Wang, Z. L. & Wu, W. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 51, 11700-11721 (2012).
  8. Ramadoss, A. et al. Piezoelectric-driven self-charging supercapacitor power cell. ACS Nano 9, 4337-4345 (2015).
  9. Kathy, L. Materials in Energy Conversion, Harvesting, and Storage. (Hoboken, New Jersey, John Wiley & Sons, Inc., 2014).
  10. Xue, X., Wang, S., Guo, W., Zhang, Y. & Wang, Z. L. Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self- charging power cell. Nano Lett. 12, 5048-5054 (2012).
  11. Kim, Y.-S. et al. Highly porous piezoelectric PVDF membrane as effective lithium ion transfer channels for enhanced self-charging power cell. Nano Energy 14, 77-86 (2015).
  12. Niu, S., Wang, X., Yi, F., Zhou, Y. S. & Wang, Z. L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 6, 8975 (2015).
  13. Qi, Y. & McAlpine, M. C. Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 3, 1275-1285 (2010).
  14. Xu, S., Hansen, B. J. & Wang, Z. L. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat. Commun. 1, 93 (2010).
  15. Wu, F., Cai, W., Yeh, Y.-W., Xu, S. & Yao, N. Energy scavenging based on a single-crystal PMN-PT nanobelt. Sci. Rep. 6, 22513 (2016).
  16. Zhu, G., Chen, J., Zhang, T., Jing, Q. & Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5, 3426 (2014).
  17. Chun, J. et al. Boosted output performance of triboelectric nanogenerator via electric double layer effect. Nat. Commun. 7, 12985 (2016).
  18. Zi, Y. et al. Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 7, 10987 (2016).
  19. Skunik-Nuckowska, M. et al. Integration of solid-state dye-sensitized solar cell with metal oxide charge storage material into photoelectrochemical capacitor. J. Power Sources 234, 91-99 (2013).
  20. Chen, H.-W. et al. Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods. J. Power Sources 195, 6225-6231 (2010).
  21. Xu, J., Chen, Y. & Dai, L. Efficiently photo-charging lithium-ion battery by perovskite solar cell. Nat. Commun. 6, 8103 (2015).
  22. Liao, S. et al. Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging. Nat. Commun. 7, 11474 (2016).
  23. Niwa, S. et al. Structure of the LH1-RC complex from thermochromatium tepidum at 3.0 Å. Nature 508, 228-232 (2014).
  24. Qian, P. et al. Three-dimensional structure of the Rhodobacter sphaeroides RC-LH1-PufX complex: dimerization and quinone channels promoted by PufX. Biochemistry 52, 7575-7585 (2013).
  25. Jones, M. R. The petite purple photosynthetic powerpack. Biochem. Soc. Trans. 37, 400-407 (2009).
  26. Zinth, W. & Wachtveitl, J. The first picoseconds in bacterial photosynthesis- ultrafast electron transfer for the efficient conversion of light energy. Chemphyschem 6, 871-880 (2005).
  27. Ravi, S. K. & Tan, S. C. Progress and perspectives in exploiting photosynthetic biomolecules for solar energy harnessing. Energy Environ. Sci. 8, 2551-2573 (2015).
  28. Ravi, S. K., Udayagiri, V. S., Suresh, L. & Tan, S. C. Emerging role of the band- structure approach in biohybrid photovoltaics: a path beyond bioelectrochemistry. Adv. Funct. Mater. 28, 1705305 (2018).
  29. Ravi, S. K. et al. Photosynthetic bioelectronic sensors for touch perception, UV-detection, and nanopower generation: toward self-powered E-skins. Adv. Mater. 30, 1802290 (2018).
  30. Ravi, S. K. et al. A mechanoresponsive phase-changing electrolyte enables fabrication of high-output solid-state photobioelectrochemical devices from pigment-protein multilayers. Adv. Mater. 30, 1704073 (2018).
  31. Ravi, S. K. et al. Enhanced output from biohybrid photoelectrochemical transparent tandem cells integrating photosynthetic proteins genetically modified for expanded solar energy harvesting. Adv. Energy Mater. 7, 1601821 (2017).
  32. Zhao, F. et al. Light-induced formation of partially reduced oxygen species limits the lifetime of photosystem 1-based biocathodes. Nat. Commun. 9, 1973 (2018).
  33. Wenzel, T., Härtter, D., Bombelli, P., Howe, C. J. & Steiner, U. Porous translucent electrodes enhance current generation from photosynthetic biofilms. Nat. Commun. 9, 1299 (2018).
  34. Saper, G. et al. Live cyanobacteria produce photocurrent and hydrogen using both the respiratory and photosynthetic systems. Nat. Commun. 9, 2168 (2018).
  35. Kornienko, N., Zhang, J. Z., Sakimoto, K. K., Yang, P. & Reisner, E. Interfacing nature's catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 13, 890 (2018).
  36. Siebert, C. A. et al. Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides: the role of PufX. EMBO J. 23, 690-700 (2004).
  37. Walz, T., Jamieson, S. J., Bowers, C. M., Bullough, P. A. & Hunter, C. N. Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 Å, LH1 and RC-LH1 at 25 Å. J. Mol. Biol. 282, 833-845 (1998).
  38. Dezi, M. et al. Stabilization of charge separation and cardiolipin confinement in antenna-reaction center complexes purified from Rhodobacter sphaeroides. Biochim. Biophys. Acta 1767, 1041-1056 (2007).
  39. Comayras, F., Jungas, C. & Lavergne, J. Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides, I. Quinone domains and excitation transfer in chromatophores and reaction center antenna complexes. J. Biol. Chem. 280, 11203-11213 (2005).
  40. Francia, F. et al. Light-harvesting complex 1 stabilizes P + Q B -charge separation in reaction centers of Rhodobacter sphaeroides. Biochemistry 43, 14199-14210 (2004).
  41. Kropacheva, T. N. & Hoff, A. J. Electrochemical oxidation of bacteriochlorophyll a in reaction centers and antenna complexes of photosynthetic bacteria. J. Phys. Chem. B 105, 5536-5545 (2001).
  42. Robert, B., Lutz, M. & Tiede, D. M. Selective photochemical reduction of either of the two bacteriopheophytins in reaction centers of Rps. sphaeroides R-26. FEBS Lett. 183, 326-330 (1985).
  43. Mar, T., Picorel, R. & Gingras, G. Phototrapping of doubly reduced monomeric bacteriochlorophyll in the photoreaction center of Ectothiorhodospira sp. Biochemistry 32, 1466-1470 (1993).
  44. Blaise, G. Charge localization and transport in disordered dielectric materials. J. Electrost. 50, 69-89 (2001).
  45. Brédas, J.-L., Sargent, E. H. & Scholes, G. D. Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nat. Mater. 16, 35 (2017).
  46. Warren, J. J., Winkler, J. R. & Gray, H. B. Hopping maps for photosynthetic reaction centers. Coord. Chem. Rev. 257, 165-170 (2013).
  47. Takshi, A., Madden, J. D. & Beatty, J. T. Diffusion model for charge transfer from a photosynthetic reaction center to an electrode in a photovoltaic device. Electrochim. Acta 54, 3806-3811 (2009).
  48. Singh, V. K. et al. Biohybrid photoprotein-semiconductor cells with deep-lying redox shuttles achieve a 0.7 V photovoltage. Adv. Funct. Mater. 28, 1703689 (2017).
  49. Trammell, S. A., Spano, A., Price, R. & Lebedev, N. Effect of protein orientation on electron transfer between photosynthetic reaction centers and carbon electrodes. Biosens. Bioelectron. 21, 1023-1028 (2006).
  50. Sumino, A., Dewa, T., Sasaki, N., Kondo, M. & Nango, M. Electron conduction and photocurrent generation of a light-harvesting/reaction center core complex in lipid membrane environments. J. Phys. Chem. Lett. 4, 1087-1092 (2013).
  51. Kondo, M. et al. Photocurrent and electronic activities of oriented-His-tagged photosynthetic light-harvesting/reaction center core complexes assembled onto a gold electrode. Biomacromolecules 13, 432-438 (2012).
  52. Stamouli, A., Frenken, J., Oosterkamp, T., Cogdell, R. & Aartsma, T. The electron conduction of photosynthetic protein complexes embedded in a membrane. FEBS Lett. 560, 109-114 (2004).
  53. Monshouwer, R., Abrahamsson, M., Van Mourik, F. & Van Grondelle, R. Superradiance and exciton delocalization in bacterial photosynthetic light- harvesting systems. J. Phys. Chem. B 101, 7241-7248 (1997).
  54. Volotsenko, I., Molotskii, M., Borovikova, A., Nelson, N. & Rosenwaks, Y. Evidence for deep acceptor centers in plant photosystem I crystals. J. Phys. Chem. B 119, 1374-1379 (2015).
  55. Toporik, H. et al. Large photovoltages generated by plant photosystem I crystals. Adv. Mater. 24, 2988-2991 (2012).
  56. Swainsbury, D. J., Friebe, V. M., Frese, R. N. & Jones, M. R. Evaluation of a biohybrid photoelectrochemical cell employing the purple bacterial reaction centre as a biosensor for herbicides. Biosens. Bioelectron. 58, 172-178 (2014).
  57. Jones, M. R., Heer-Dawson, M., Mattioli, T. A., Hunter, C. N. & Robert, B. Site-specific mutagenesis of the reaction centre from Rhodobacter sphaeroides studied by Fourier transform Raman spectroscopy: mutations at tyrosine M210 do not affect the electronic structure of the primary donor. FEBS Lett. 339, 18-24 (1994).
  58. Friebe, V. M. et al. Plasmon-enhanced photocurrent of photosynthetic pigment proteins on nanoporous silver. Adv. Funct. Mater. 26, 285-292 (2016).