A review on the application of clay minerals as heavy metal adsorbents for remediation purposes (original) (raw)

Clay Soil Modification Techniques for the Adsorption of Heavy Metals in Aqueous Medium: A Review

INTRODUCTION Variety of clays and clay minerals play an important role in the environment and used as an effective adsorbent material for the removal of toxic metal ions from water solution (Crini, 2010). The use of clays as adsorbent have advantages upon many other commercially available adsorbents in terms of low-cost, an abundant availability, high specific surface area, excellent adsorption properties, nontoxic nature, and large potential for ion exchange (

Clays in the removal of heavy metals

A review paper discussing the applicability of clays to the removal of heavy metals from solution and the usefulness of such applications in environmental management and sustainable industrial practices. Clays are those aluminosilicate minerals which make up the colloid fraction (<2μm) of soils and act as natural scavengers for heavy metal ions. The mechanism of adsorption is seen to be the primary method applicable to the removal of heavy metal ions. Their tetrahedral and octahedral layers are seen to incorporate different ions which develop a range of properties with differing responses to experimental conditions such as contact time, temperature, pH, concentration of adsorbent, concentration of adsorbate etc. Numerous case studies of published work relating to heavy metal removal using clays are presented. Those heavy metals targeted are Zn, Cr, Co, Cu, Pb, Ma, Ni, and Cd due to their abundance in natural systems following anthropogenic and natural inputs. Clays are seen to be an effective alternative to the widely used activated carbon in the removal of metal ions from solution and should be used in order to improve cost control and reduce waste given sufficient performance when compared to alternatives.

Treated Clay Mineral as Adsorbent for the Removal of Heavy Metals from Aqueous Solution

Applied Science and Engineering Progress, 2021

The decontamination of heavy metals present in aquatic bodies is a significant challenge that requires urgent attention. Analytical methods such as BET, XRF, SEM-EDX, and XRD was employed to characterize the raw clay (NT) and acid treated clay (AT). The adsorption of Cr (VI) and Fe (III) onto AT was performed using the batch method. The effects of time, adsorbent dose, temperature, and pH show that the optimal conditions are 50 min, 0.3 g, 35°C, and pH 6. The surface area of AT was 389.37 m2/g, and the adsorption equilibrium time of AT was 50 min. Langmuir isotherms had the best fit. Adsorption capacity is 18.15 and 39.80 mg/g for Cr (VI) and Fe (III) ions, respectively. An increase in area considerably improved the adsorption capacity of AT in the surface specific area. The interaction of Cr (VI) and Fe (III) ions onto AT indicated spontaneous and endothermic reaction. The chromium (VI) kinetic constant (k2 = 1.679) was faster compared to Fe (III) rate constant (k2 = 0.0526). It ag...

Characterization and Modification of a Clay Mineral Used in Adsorption Tests

Journal of Minerals and Materials Characterization and Engineering, 2015

Clay minerals are widespread in natural systems and have been widely used for the removal of pollutants. In this study, natural expanded vermiculite was used in adsorption tests to remove ammonium nitrogen from landfill leachate. The modification of vermiculite was carried out using NaOH and HCl, and for both modifications the best concentration was 0.1 mol/L. The results produced by XRD (X-ray diffraction) showed that Al replaced K after modification of the vermiculite using HCl and that Mg and Na replaced K after modification using NaOH. It was observed that the adsorption capacity increased as the percentage in mass of K diminished. The Langmuir is the isotherm that presents the best fit of the data, and the values of RL (the Langmuir coefficient) suggest that the adsorption is linear. The thermodynamic parameters indicate that the process is spontaneous and endothermic, that there is a high affinity between the adsorbate and the adsorbent, and that physical adsorption is prevalent.

Potential of Saudi natural clay as an effective adsorbent in heavy metals removal from wastewater.pdf

Desalination and Water Treatment , 2019

This study aims to examine the potential of natural clay mineral from the southern part of Saudi Arabia as an effective adsorbent material for the removal of heavy metal ions of cadmium (Cd) and nickel (Ni) from aqueous solutions. The SEM analysis showed that clay particles had mixed shapes such as elongated rod-like and rectangular shape having rough corners with larger particles of 2-8 µm in size and smaller particles in the sub-micron size range. X-ray diffraction data revealed that clay particles had a good crystalline structure and composed of a mixture of various minerals including feldspar, illite, quartz, calcite, and gypsum. The BET surface area was found to be 35 ± 1 m 2 /g and the average pore size and pore volume of 6.5 ± 0.5 nm and 5.7e-02 cc/g, respectively. The X-ray fluorescence analysis of clay showed main compounds of SiO 2 (47.33%), Al 2 O 3 (18.14%), Fe 2 O 3 (15.89%) with many others such as CaO, MgO, TiO 2 , and K 2 O in minor quantities. It was found that 1.2 g of clay removed up to 99.5% of Ni and 97.5% of Cd from 40 ppm aqueous solutions. The metal removal efficiencies were increased from around 95% up to 99% by increasing the pH of aque-ous solutions from 4 to 11. The adsorption of Ni and Cd ions on Saudi clay was relatively fast, and up to 97% of ions were removed from solution within 45 min. The SEM-EDX and BET analysis for recycled clays further confirmed that the metal ions were removed from water through adsorption onto the clay. The experimental data fitted well with Langmuir and Freundlich isotherms. The maximum adsorption capacity of clay for Cd and Ni from isotherms was found to be 3.3 and 2.7 mg/g respectively. The findings of this study confirm the potential role of Saudi natural clay in wastewater treatment processes as a cheap, environment-friendly and safe natural adsorbent material.

Potential of Saudi natural clay as an effective adsorbent in heavy metals removal from wastewater

DESALINATION AND WATER TREATMENT

This study aims to examine the potential of natural clay mineral from the southern part of Saudi Arabia as an effective adsorbent material for the removal of heavy metal ions of cadmium (Cd) and nickel (Ni) from aqueous solutions. The SEM analysis showed that clay particles had mixed shapes such as elongated rod-like and rectangular shape having rough corners with larger particles of 2-8 µm in size and smaller particles in the sub-micron size range. X-ray diffraction data revealed that clay particles had a good crystalline structure and composed of a mixture of various minerals including feldspar, illite, quartz, calcite, and gypsum. The BET surface area was found to be 35 ± 1 m 2 /g and the average pore size and pore volume of 6.5 ± 0.5 nm and 5.7e-02 cc/g, respectively. The X-ray fluorescence analysis of clay showed main compounds of SiO 2 (47.33%), Al 2 O 3 (18.14%), Fe 2 O 3 (15.89%) with many others such as CaO, MgO, TiO 2 , and K 2 O in minor quantities. It was found that 1.2 g of clay removed up to 99.5% of Ni and 97.5% of Cd from 40 ppm aqueous solutions. The metal removal efficiencies were increased from around 95% up to 99% by increasing the pH of aqueous solutions from 4 to 11. The adsorption of Ni and Cd ions on Saudi clay was relatively fast, and up to 97% of ions were removed from solution within 45 min. The SEM-EDX and BET analysis for recycled clays further confirmed that the metal ions were removed from water through adsorption onto the clay. The experimental data fitted well with Langmuir and Freundlich isotherms. The maximum adsorption capacity of clay for Cd and Ni from isotherms was found to be 3.3 and 2.7 mg/g respectively. The findings of this study confirm the potential role of Saudi natural clay in wastewater treatment processes as a cheap, environment-friendly and safe natural adsorbent material.

Physicochemical study of novel organoclays as heavy metal ion adsorbents for environmental remediation

Journal of Colloid and Interface Science, 2007

Four organic-modified clays based on a SWy-2 montmorillonite were prepared by embedding ammonium organic derivatives with different chelating functionalities (-NH 2 , -COOH, -SH or -CS 2 ) in the interlayer space of montmorillonite. Organic molecules such as (a) hexamethylenediamine, (b) 2-(dimethylamino)ethenethiol, (c) 5-aminovaleric acid and (d) hexamethylenediamine-dithiocarbamate were used for the clay modification in order to study the effect of the chelating functionality on heavy metal ions binding from aqueous solutions. The organoclays were characterized by powder X-ray diffraction (XRD), infrared (FTIR) and NMR spectroscopies. The experimental data showed that the organic molecules are intercalated into the interlamelar space with the long dimension parallel to the clay sheets. Their sorbing properties were evaluated for the removal of heavy metals, Pb, Cd and Zn, from aqueous solutions as a function of the pH. When compared with the unmodified SWy-2 montmorillonite, the modified clays show significant improvement in terms of sorbing selectivity as well as of metal loading capacity. The fit to adsorption data by a Surface Complexation Model shows that the intercalated molecules act as specific binding sites in the clay. These contribute additional sorption capacity which is additive to the variable charge edge-sites of the clay in competition with the permanent charge sites. (Y. Deligiannakis). heavy metals. Moreover, due to their abundance in soil systems, their high specific surface area and exchange capacity, clay minerals such as montmorillonite play a significant role in determining the availability and transport of metals species in soil and sediments .

Adsorption of organic pollutants by natural and modified clays: A comprehensive review

Separation and Purification Technology, 2019

Adsorption process has been widely used for treatment of wastewaters due to its simplicity and lower costs as compared to other traditional technologies. Among the alternative sorbent materials, the use of abundantly available clays for adsorption of organic pollutants has garnered increasing attention worldwide. Clays, in its natural and modified forms, have been extensively employed for the removal of organic contaminants from different wastewaters. The current review appraises the sorption performance of natural and modified clays for environmental remediation applications. The adsorption capacity of phenolic compounds, aromatic compounds, pesticides and herbicides, and other organic contaminants are comprehensively reviewed. The effect of the experimental conditions (pH, initial concentration (C o), surfactant loading, etc.) on the adsorption capacity is also appraised. Furthermore, the adsorption mechanisms, structures, and adsorptive characteristics of natural and modified clay sorbents are included. A statistical analysis of the adsorption isotherms reveals that Langmuir and Freundlich are the most examined models in fitting the experimental adsorption data. In addition, the adsorption kinetics is predominantly based on the pseudo-second-order model. The current review is an attempt to draw a prior knowledge about the technical viability of clay sorption process by assessing outcomes of the studies published between 2000 and 2018.