Senescent males carry premutagenic lesions in sperm (original) (raw)
Related papers
Obstetrical & Gynecological Survey, 2006
This study compares the relative effects of advancing male age on multiple genomic defects in human sperm [DNA fragmentation index (DFI), chromatin integrity, gene mutations, and numerical chromosomal abnormalities], characterizes the relationships among these defects and with semen quality, and estimates the incidence of susceptible individuals for a well characterized nonclinical nonsmoking group of 97 men (22-80 years). Adjusting for confounders, we found major associations between age and the frequencies of sperm with DFI and fibroblast growth factor receptor 3 gene (FGFR3) mutations associated with achondroplasia (P < 0.01) with no evidence for age thresholds. However, we found no associations between age and the frequencies of sperm with immature chromatin, aneuploidies/diploidies, FGFR2 mutations (Apert syndrome), or sex ratio in this cohort. There were also no consistent correlations among genomic and semen-quality endpoints, except between DFI and sperm motility (r = -0.65, P < 0.001). These findings suggest there are multiple spermatogenic targets for genomically defective sperm with substantially variable susceptibilities to age. Our findings predict that as healthy males age, they have decreased pregnancy success with trends beginning in their early reproductive years, increased risk for producing offspring with achondroplasia mutations, and risk of fathering offspring with Apert syndrome that may vary across cohorts, but with no increased risk for fathering aneuploid offspring (Down, Klinefelter, Turner, triple X, and XYY syndromes) or triploid embryos. Our findings also suggest that the burden of genomic damage in sperm cannot be inferred from semen quality, and that a small fraction of men are at increased risk for transmitting multiple genetic and chromosomal defects.
Biology of Reproduction, 2011
The present trend of increasing paternal age is accompanied by concerns for the development of complex multigene diseases (e.g., autism and schizophrenia) in progeny. Recent studies have established strong correlations between male age, increased oxidative stress, decreased sperm quality, and structural aberrations of chromatin and DNA in spermatozoa. We tested the hypothesis that increasing age would result in altered gene expression relating to oxidative stress and DNA damage/repair in germ cells. To test this hypothesis, pachytene spermatocytes and round spermatids were isolated from Brown Norway (BN) rats at 4 (young) and 18 (aged) mo of age. Microarray analysis was used to compare gene expression between the groups. The probe sets with significantly altered expression were linked to DNA damage/repair and oxidative stress in pachytene spermatocytes but not in round spermatids. Further analysis of pachytene spermatocytes demonstrated that genes involved in the base excision repair (BER) and nucleotide excision repair (NER) pathways were specifically altered. Quantitative RT-PCR confirmed that NER genes were upregulated (&amp;amp;amp;amp;amp;gt;1.5-fold), whereas BER genes were downregulated (&amp;amp;amp;amp;amp;gt;1.5-fold). At the protein level the members of the BER pathway were also altered by up to 2.3-fold; levels of NER proteins remained unchanged. Furthermore, there was an increase in 8-oxo-2&amp;amp;amp;amp;amp;#39;-deoxyguanosine (8-oxodG) immunoreactivity in testes from aged males and in the number of spermatozoa positive for 8-oxodG. In conclusion, aging is associated with differential regulation of DNA repair pathways with a decrease in the BER pathway leading to deficient repair of 8-oxo-dG lesions in germ cells and spermatozoa.
DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage
DNA Repair, 2008
The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7-1 dbf). Analysis of chromosomal aberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.
Age-related changes in human sperm DNA integrity
Aging, 2019
Abnormal standard semen characteristics and reduced sperm chromatin maturity can appear with increasing male age. However, the influence of paternal age on semen parameters is still controversial. Therefore, this study was designed to estimate the influence of paternal age not only on conventional semen characteristics but also on sperm DNA integrity. This research was carried out on ejaculated sperm cells obtained from men (n = 1124) aged ≥40 y and <40 y. Our data revealed a decreased semen volume and an increased percentage of DFI (sperm DNA fragmentation index) in older men compared to younger men in the entire study cohort, in men with normozoospermia and in men with abnormal semen parameters. Moreover, there was a higher incidence of sperm DNA damage (>10% DFI, low fertility potential) in the groups of men aged ≥40 y than in the groups of men aged <40 y. Older men had over twice the odds ratio for high sperm DNA damage as younger men. Our findings suggest a detrimental effect of advanced paternal age on sperm chromatin integrity. The data show that the evaluation of sperm DNA has greater clinical utility than standard semen analysis in case of male fertility potential assessment.
The effects of male age on sperm DNA damage in an infertile population
Reproductive BioMedicine Online, 2007
The objective was to investigate the influence of age on sperm DNA damage. Semen samples were collected from 508 men in an unselected group of couples attending infertility investigation and treatment. DNA fragmentation in spermatozoa was measured by TdT (terminal deoxynucleotidyl transferase)-mediated dUTP nick-end labelling (TUNEL) assay; at least 200 spermatozoa in randomly selected areas of microscope slides were evaluated using a fluorescent microscope and the percentage of TUNEL positive spermatozoa was determined. The number of cells with red fluorescence (TUNEL positive) was expressed as a percentage of the total sample [DNA fragmentation index (DFI)]. Age was treated as a continuous variable for regression and correlation analysis. The following male age groups were used: Group I: ≤35 years, Group II: 36-39 years, and Group III: ≥40 years. DFI was significantly lower in Group I than in Group II (P = 0.034) or III (P = 0.022). There was no difference in DFI between Groups II and III. In addition, regression analysis demonstrated a significant increase in sperm DFI with age (P = 0.02). TUNEL assay clearly demonstrates an increase in sperm DNA damage with age.
Nature Reviews Urology, 2013
| Several studies have demonstrated a decline in the male reproductive system, sperm quality, and fertility with advancing paternal age, yet many of the biological mechanisms that underlie this process remain poorly understood. It is unclear whether the problem arises from the progenitor spermatogonial stem cells (for example, from an accumulation of DNA damage and mutations), from the somatic niche present in the testis (consisting of Sertoli and peritubular myoid cells), or from a combination of the two. Current data, albeit from a small number of studies, suggest that both factors have a role in age-associated germ cell loss. What is clear, on the other hand, is that mounting evidence links paternal age to chromosomal damage and genetic problems in the children of older fathers. The frequency of de novo mutations increases markedly with age, leading to increased risk of breast cancer, cardiac defects, developmental disorders, behavioural disorders, and neurological disease in the children of older men. The current trend towards fathering children at a later age raises concerns regarding the risk of offspring developing complex multigene diseases.
Mutation spectral changes in spermatogenic cells obtained from old mice
DNA Repair, 2004
Male reproductive health is compromised with increased paternal age, due at least in part, to an increased frequency of de novo germline mutations. Because of technical and sample limitations, there is a dearth of empirical information on the mechanism(s) that mediate this age-related increase in mutant frequency. To study this phenomenon, investigators have used as a model system a transgenic mouse strain that carries a lacI mutagenesis reporter transgene. This transgene displays a paternal age effect and overcomes many of the technical difficulties that have inhibited experimental analyses of age-related changes in the male germline. In this study, approximately 300 mutant lacI transgenes were recovered from defined spermatogenic cell types obtained from various aged lacI transgenic mice and sequenced. The spectrum representing mutations from spermatogenic cells of old mice revealed an increased prevalence of transversions compared to spectra for young and middle-aged mice. Five mutation hotspots were identified in spectra for spermatogenic cells from young and middle-aged mice, but no hotspots were identified in the spectrum for spermatogenic cells from old mice. These results suggest that the challenges to germline DNA change as the animal ages and that the increased mutant frequency observed with increased paternal age is not simply a greater accumulation of mutagenic events characteristic of spermatogenic cells from the young animal.
The effects of male age on sperm DNA damage: an evaluation of 2,178 semen samples
JBRA assisted reproduction, 2018
This study aimed to evaluate the effects of male age on sperm DNA damage. This cross-sectional study included semen samples collected from 2,178 men seen at an infertility clinic. For DNA integrity analysis, the proportions of spermatozoa showing DNA fragmentation (TUNEL assay), abnormal chromatin packaging/underprotamination (chromomycin A), abnormal mitochondrial membrane potential (MMP/MitoTracker Green), and apoptosis (annexin V) were recorded. For group comparisons, enrolled subjects were divided into three groups based on their ages: ≤35 years; 36-44 years; and ≥45 years. The associations between age and sperm parameters were assessed using Spearman's rank correlation coefficient. Although aging did not affect sperm apoptosis (>.05), sperm DNA fragmentation and MMP deteriorated significantly with age (<.05). Chromatin packaging/protamination improved significantly with age (<.05). Sperm DNA fragmentation worsened with age and was apparently associated with mitocho...
Aging Results in Molecular Changes in an Enriched Population of Undifferentiated Rat Spermatogonia
Biology of Reproduction, 2013
A strong correlation exists between increasing paternal age and a decline in reproductive function. Testis aging is associated with testicular atrophy, increased DNA damage, and de novo mutations. It is unclear whether these problems arise from the spermatogonial stem cells (SSCs), a buildup of anomalies as older germ cells progress through spermatogenesis, or both. We hypothesize that with the continual divisions of SSCs that maintain the germ cell population, an alteration of these cells occurs over time. To test this, we utilized young (4-mo-old) and aged (18-and 21-mo-old) transgenic rats that express GFP in germ cells only. We first examined the number and activity of SSCs from the different age groups by transplantation. Aged rats had numerically fewer SSCs than young rats (,50%; not significant) despite the lack of testicular atrophy, and 21-moold rats show a significant reduction in colony length, suggesting that the quality of SSCs also deteriorates. To evaluate any molecular changes occurring in the early cells of spermatogenesis with age, we isolated an SSC-enriched population of CD9positive (CD9 +) cells using fluorescence-activated cell sorting (confirmed by transplantation studies) and extracted RNA for microarray analysis. In the aged CD9 + cells, 60 transcripts were upregulated and more than 500 downregulated compared to the young cells. An altered expression was found for transcripts involved in mitosis and in DNA damage response. These results suggest molecular alterations in the SSC-enriched population of aged CD9 + cells, implying that reproductive aging originates in the undifferentiated cells of spermatogenesis.