A comparative TCAD simulations of a P-and N-type organic field effect transistors: field-dependent mobility, bulk and interface traps models (original) (raw)

The nature of charge transport in organic materials depends on several important aspects, such as the description of the density of states, and the charge mobility model. Therefore specific models describing electronic properties of organic semiconductors must be considered. We have used an organic based drift-diffusion model for the electrical characterization of organic field effect transistors (OFETs) utilizing either small molecules or polymers. Furthermore, the effect of interface traps, bulk traps, and fixed charges on transistor characteristics are included and investigated. Finally, simulation results are compared to experimental measurements, and conclusions are drawn out in terms of transistor performance parameters including threshold voltages, and field-dependent mobilities.