Decoding working memory-related information from repeated psychophysiological EEG experiments using convolutional and contrastive neural networks (original) (raw)
Journal of Neural Engineering
Abstract
Objective. Extracting reliable information from electroencephalogram (EEG) is difficult because the low signal-to-noise ratio and significant intersubject variability seriously hinder statistical analyses. However, recent advances in explainable machine learning open a new strategy to address this problem. Approach. The current study evaluates this approach using results from the classification and decoding of electrical brain activity associated with information retention. We designed four neural network models differing in architecture, training strategies, and input representation to classify single experimental trials of a working memory task. Main results. Our best models achieved an accuracy (ACC) of 65.29 ± 0.76 and Matthews correlation coefficient of 0.288 ± 0.018, outperforming the reference model trained on the same data. The highest correlation between classification score and behavioral performance was 0.36 (p = 0.0007). Using analysis of input perturbation, we estimated...
Jacek Rogala hasn't uploaded this paper.
Let Jacek know you want this paper to be uploaded.
Ask for this paper to be uploaded.