EEG-neurofeedback training of beta band (12-22Hz) affects alpha and beta frequencies - A controlled study of a healthy population (original) (raw)
Related papers
Individual EEG Alpha Activity Analysis for Enhancement Neurofeedback Efficiency: Two Case Studies
Journal of Neurotherapy, 2010
The hypothesis was tested of whether neurofeedback training applied in order to increase or decrease power of individual EEG frequency ranges is more efficient than neurofeedback training of standard EEG frequency ranges. The sessions of decreasing the theta=beta ratio and reinforcing alpha neurofeedback training were carried out on two outpatients with attention deficit disorder (a schoolboy) and functional pain contraction (a professional musician). The neurofeedback utilizing standard EEG frequency ranges (theta 4-8, alpha 8-12, beta 13-18) was inefficient and even resulted in aggravation of symptoms in both cases. The individualized neurofeedback that utilized individual frequency ranges resulted in substantial clinical improvement. KEYWORDS. EEG, individual alpha band width (IABW), individual alpha peak frequency (IAPF), individual amount of alpha suppression (IAAS), neurofeedback
Comparison of Visual and Auditory Modalities for Upper-Alpha EEG-Neurofeedback
2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019
Electroencephalography (EEG) neurofeedback (NF) training has been shown to produce long-lasting effects on the improvement of cognitive function as well as the normalization of aberrant brain activity in disease. However, the impact of the sensory modality used as the NF reinforcement signal on training effectiveness has not been systematically investigated. In this work, an EEG-based NFtraining system was developed targeting the individual upperalpha (UA) band and using either a visual or an auditory reinforcement signal, so as to compare the effects of the two sensory modalities. Sixteen healthy volunteers were randomly assigned to the Visual or Auditory group, where a radiusvarying sphere or a volume-varying sound, respectively, reflected the relative amplitude of UA measured at EEG electrode Cz. Each participant underwent a total of four NF sessions, of approximately 40 min each, on consecutive days. Both groups showed significant increases in UA at Cz within sessions, and also across sessions. Effects subsequent to NF training were also found beyond the target frequency UA and scalp location Cz, namely in the lower-alpha and theta bands and in posterior brain regions, respectively. Only small differences were found on the EEG between the Visual and Auditory groups, suggesting that auditory reinforcement signals may be as effective as the more commonly used visual signals. The use of auditory NF may potentiate training protocols conducted under mobile conditions, which are now possible due to the increasing availability of wireless EEG systems.
This paper reports on a single-session neurofeedback (NF) training procedure on the user-specific upper alpha band for cognitive enhancement in healthy users. A doubleblind study was designed using a NF group and an active control group. Control group performed as the NF group but received sham feedback, minimizing the non-specific factors of training. This design aimed to (i) investigate upper alpha as a NF parameter, (ii) evaluate the NF effects on upper alpha during the execution of a cognitive task, and (iii) evaluate the effects on cognitive performance by means of a cognitive task and a battery of psychological tests. Results of EEG analysis show the key role of the feedback: only the NF group enhanced upper alpha during the training, and it led to a desynchronization increase during the execution of the cognitive task. Regarding the behavioral results, a strong learning effect was observed, with the NF group performing better in almost all measurements but many of them without statistical significance.
Comparison of Visual and Auditory Modalities for Upper-Alpha EEG-Neurofeedback
2019
Electroencephalography (EEG) neurofeedback (NF) training has been shown to produce long-lasting effects on the improvement of cognitive function as well as the normalization of aberrant brain activity in disease. However, the impact of the sensory modality used as the NF reinforcement signal on training effectiveness has not been systematically investigated. In this work, an EEG-based NFtraining system was developed targeting the individual upperalpha (UA) band and using either a visual or an auditory reinforcement signal, so as to compare the effects of the two sensory modalities. Sixteen healthy volunteers were randomly assigned to the Visual or Auditory group, where a radiusvarying sphere or a volume-varying sound, respectively, reflected the relative amplitude of UA measured at EEG electrode Cz. Each participant underwent a total of four NF sessions, of approximately 40 min each, on consecutive days. Both groups showed significant increases in UA at Cz within sessions, and also ...
To examine whether it was possible to improve short-term memory performance of healthy participants by increasing relative alpha band power (7-11.5 Hz) using neurofeedback, we first converted a commercial EEG device (EmotivEpoc) to a neurofeedback tool and collected data from 11 healthy Turkish male graduate students in five neurofeedback sessions. Before and after neurofeedback training, a memorization task using 10 English words and their Turkish meanings was applied to all participants. The results indicated that 6 out of 11 participants were able to enhance their relative alpha band power with respect to other bands in the frequency spectrum during neurofeedback sessions. Although there was no obvious improvement in their short-term memory performance, we may conclude that neurofeedback training was beneficial for the participants to focus their minds consciously. However, it is not easy to mention that neurofeedback training certainly improved or was irrelevant with short-term memory performance. This study is important in the sense that for such a focused group the use of a commercial, customized low-cost EEG device was shown to be feasible for neurofeedback training sessions.
Neuroreport, 2001
Learned enhancement of EEG frequency components in the lower beta range by means of biofeedback has been reported to alleviate attention deficit hyperactivity disorder (ADHD) symptoms. In order to elucidate frequency-specific behavioural effects and neurophysiological mediators, this study applied neurofeedback protocols to healthy volunteers, and assessed impact on behavioural and electrocortical attention measures. Operant enhancement of a 12-15 Hz component was associated with reduction in commission errors and improved perceptual sensitivity on a continuous performance task (CPT), while the opposite relation was found for 15-18 Hz enhancement. Both 12-15 Hz and 15-18 Hz enhancement were associated with significant increases in P300 event-related brain potential amplitudes in an auditory oddball task. These relations are interpreted as stemming from band-specific effects on perceptual and motor aspects of attention measures.
The effect of training distinct neurofeedback protocols on aspects of cognitive performance
International Journal of Psychophysiology, 2003
The use of neurofeedback as an operant conditioning paradigm has disclosed that participants are able to gain some control over particular aspects of their electroencephalogram (EEG). Based on the association between theta activity (4-7 Hz) and working memory performance, and sensorimotor rhythm (SMR) activity (12-15 Hz) and attentional processing, we investigated the possibility that training healthy individuals to enhance either of these frequencies would specifically influence a particular aspect of cognitive performance, relative to a non-neurofeedback control-group. The results revealed that after eight sessions of neurofeedback the SMR-group were able to selectively enhance their SMR activity, as indexed by increased SMRytheta and SMRybeta ratios. In contrast, those trained to selectively enhance theta activity failed to exhibit any changes in their EEG. Furthermore, the SMR-group exhibited a significant and clear improvement in cued recall performance, using a semantic working memory task, and to a lesser extent showed improved accuracy of focused attentional processing using a 2-sequence continuous performance task. This suggests that normal healthy individuals can learn to increase a specific component of their EEG activity, and that such enhanced activity may facilitate semantic processing in a working memory task and to a lesser extent focused attention. We discuss possible mechanisms that could mediate such effects and indicate a number of directions for future research. ᮊ