Finite groups whose generalized hypercenter contains certain subgroups of prime power order (original) (raw)
Abstract
In this paper, we investigate the structure of a finite group G under the assumption that certain abelian subgroups of largest possible exponent of prime power order lie in the generalized hypercenter of the group G , and some known results on supersolvability of finite groups are generalized.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (14)
- R.K. Agrawal, Generalized center and hypercenter of a finite group, Proc. Amer. Math. Soc., 54(1976) 13-21.
- M. Asaad and M. Ezzat Mohamed, On generalized hyper- center of a finite group, Comm. Algebra, 29(5)(2001) 2239- 2248.
- M. Asaad and M.Ezzat Mohamed, Finite groups with quasi- normal subgroups of prime power order, Acta Math. Hungar., 89(4)(2000) 321-326.
- M. Asaad, A.A. Heliel and M. Ezzat Mohamed, Finite groups with some S-quasinormally embedded, Comm. Algebra, 32 (5)(2004) 2019-2027.
- M. Asaad, M. Ramadan and M.Ezzat, Finite groups with normal subgroups of prime power order, PU. M. A., 5(3) (1994) 251-256.
- J. Buckley, Finite groups whose minimal subgroups are normal, Math. Z.,116(1970) 15-17.
- B. Huppert, Endiche Gruppen I, Berlin, Springer-Verlag, Berlin, 1979.
- O. H. Kegel, Sylow-Gruppen und subnormalteiler endlicher gruppen, Math. Z. 78, (1962) 205-221.
- N.P.Mukherjee, The hyperquasicenter of a finite group I, Proc. Amer. Math. Soc., 26(1970) 239-243.
- O.Ore, Contributions to the theory of groups of finite order, Duke. Math. J. 5(1939), 431-460.
- M. Ramadan, The influence of S-quasinormality of some sub- groups of prime power order on the structure of finite groups, Arch. Math. 77, (2001) 143-148.
- M. Ramadan, The influence of certain abelian subgroups on the structure of finite groups, Algebra Colloquium 15:3(2008) 479-484.
- P. Schmid, Subgroup permutable with all Sylow subgroups, J. Algebra, 207(1998) 285-293.
- M. Weinstein (editor), Between nilpotent and solvable, Polyg onal Publishing House, Passaic, New Jersey, 1982. Received: April, 2012