On S-Semipermutable Subgroups and Soluble PST-Groups (original) (raw)
Abstract
All groups presented in this article are finite. Using several permutability embedding properties, a number of new characterisations of soluble PST-groups are studied.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (7)
- Asaad, M., Heliel, A.A.: On permutable subgroups of finite groups. Arch. Math. (Basel) 80, 113-118 (2003)
- Ballester-Bolinches, A., Cossey, J., Soler-Escrivà, X.: On a permutability prop- erty of subgroups of finite soluble groups. Commun. Contemp. Math. 12(2), 207-221 (2010)
- Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of Finite Groups. de Gruyter Expositions in Mathematics, vol. 53. Walter de Gruyter, Berlin (2010)
- Beidleman, J.C., Ragland, M.F.: Subnormal, permutable, and embedded sub- groups in finite groups. Cent. Eur. J. Math. 9(4), 915-921 (2011)
- Beidleman, J.C., Ragland, M.F.: Groups with maximal subgroups of Sylow sub- groups satisfying certain permutability conditions. Southeast Asian Bull. Math. 38(2), 183-190 (2014)
- Doerk, K., Hawkes, T.: Finite Soluble Groups. De Gruyter Expositions in Math- ematics, vol. 4. Walter de Gruyter, Berlin, New York (1992)
- Fakieh, W.M., Hijazi, R.A., Ballester-Bolinches, A., Beidleman, J.C.: On two classes of finite supersoluble groups. Preprint R. A. Hijazi and W. M. Fakieh Department of Mathematics, Faculty of Science King Abdulaziz University 14466 Jeddah 21424 Saudi Arabia e-mail: rhijazi@kau.edu.sa W. M. Fakieh e-mail: wfakieh@kau.edu.sa A. Ballester-Bolinches Departament de Matemàtiques Universitat de València Dr. Moliner, 50 46100 Burjassot València Spain e-mail: Adolfo.Ballester@uv.es J. C. Beidleman Department of Mathematics University of Kentucky Lexington KY 40506-0027 USA e-mail: james.beidleman@uky.edu Received: January 11, 2017. Accepted: February 27, 2017.