Comparative effect of overexpressed phaJ and fabG genes supplementing (R)-3-hydroxyalkanoate monomer units on biosynthesis of mcl-polyhydroxyalkanoate in Pseudomonas putida KCTC1639 (original) (raw)
Related papers
Applied Biochemistry and Biotechnology, 2006
Pseudomonas putida was metabolically engineered to produce medium chain length polyhydroxyalkanoate (mcl-PHA) from acetate, a promising carbon source to achieve cost-effective microbial processes. As acetate is known to be harmful to cell growth, P. putida KT2440 was screened from three Pseudomonas strains (P. putida KT2440, P. putida NBRC14164, and P. aeruginosa PH1) as the host with the highest tolerance to 10 g/L of acetate in the medium. Subsequently, P. putida KT2440 was engineered by amplifying the acetate assimilation pathway, including overexpression of the acs (encoding acetyl-CoA synthetase) route and construction of the ackA-pta (encoding acetate kinase-phosphotransacetylase) pathway. The acs overexpressing P. putida KT2440 showed a remarkable increase of mcl-PHA titer (+ 92%), mcl-PHA yield (+ 50%), and cellular mcl-PHA content (+ 43%) compared with the wild-type P. putida KT2440, which indicated that acetate could be a potential substrate for biochemical production of mcl-PHA by engineered P. putida.
Canadian Journal of Microbiology, 2012
Six bacteria that synthesize medium-chain-length polyhydroxyalkanoates (mcl-PHAs) were isolated from sewage sludge and hog barn wash and identified as strains of Pseudomonas and Comamonas by 16S rDNA gene sequencing. One isolate, Pseudomonas putida LS46, showed good PHA production (22% of cell dry mass) in glucose medium, and it was selected for further studies. While it is closely related to other P. putida strains (F1, KT2440, BIRD-1, GB-1, S16, and W619), P. putida LS46 was genetically distinct from these other strains on the basis of nucleotide sequence analysis of the cpn60 gene hypervariable region. PHA production was detected as early as 12 h in both nitrogen-limited and nitrogen-excess conditions. The increase in PHA production after 48 h was higher in nitrogen-limited cultures than in nitrogen-excess cultures. Pseudomonas putida LS46 produced mcl-PHAs when cultured with glucose, glycerol, or C6-C14 saturated fatty acids as carbon sources, and mcl-PHAs accounted for 56% of the cell dry mass when cells were batch cultured in medium containing 20 mmol/L octanoate. Although 3-hydroxydecanoate was the major mcl-PHA monomer (58.1-68.8 mol%) in P. putida LS46 cultured in glucose medium, 3-hydroxyoctanoate was the major monomer produced in octanoate medium (88 mol%).
Antonie van Leeuwenhoek, 2008
Four (R)-specific enoyl CoA hydratases (PhaJ) interconnect the b-oxidation pathway with PHA biosynthesis in Pseudomonas aeruginosa. The use of antisense technique and over-expression to delineate the role of two of these enzymes, PhaJ1 and PhaJ4 forms the basis of this study. It has been observed that P. aeruginosa recombinant with phaJ1 antisense construct, fed with different fatty acids, produces PHA with less hydroxy octanoate (7-11% reduction) and a proportionate increase in other monomer fractions, compared to that of the control. Recombinants bearing phaJ4 antisense construct are found to contain less hydroxy decanoate (10-11% reduction) and more or less equal amount of hydroxy octanoate, compared to that of the control. P. aeruginosa produced PHA with more hydroxy octanoate and decanoate (6-17% increase), respectively, when PhaJ1 and PhaJ4 have been overexpressed individually or along with PhaC1. PhaJ1 and PhaJ4 are found to be involved mainly in the production of hydroxy octanoyl CoA and hydroxy decanoyl CoA, respectively, in P. aeruginosa. The strongest accumulation of hydroxy octanoate and hydroxy decanoate has been observed along with hydroxy butyrate, in PHA, produced by E. coli, when PhaC1 has been co-expressed with PhaJ1 and PhaJ4, respectively. We have demonstrated, for the first time, the polymerization of hydroxy butyryl CoA monomers in recombinant E. coli by PhaC1 of P. aeruginosa.
Applied Microbiology and Biotechnology, 2005
A Pseudomonas strain, 3Y2, that produced polyhydroxyalkanoate (PHA) polymers consisting of 3-hydroxybutyric acid (3HB) and medium-chain-length 3-hydroxyalkanoate (mcl-HA) units, with up to 30% 3HB, was isolated. Two PHA biosynthesis loci (pha Ps-1 and pha Ps-2 ) from 3Y2 were cloned by polymerase chain reaction amplification techniques. The pha Ps-2 locus was similar to the PHA biosynthesis loci of other PHA-producing Pseudomonas strains, with five tandem open reading frames (ORFs) located in the order ORF1 Ps-2 -phaC1 Ps-2 -phaZ Ps-2 -phaC2 Ps-2 -phaD Ps-2 . The pha Ps-1 locus that contains phaC1 Ps-1 -phaZ Ps-1 appears to have arisen by a duplication event that placed it downstream of a gene (ORF1 Ps-1 ), encoding a putative glucose-methanol-choline flavoprotein oxidoreductase. The PHA synthases 1 encoded by phaC1 Ps-1 and phaC1 Ps-2 were investigated by heterologous expression in Wautersia eutropha PHB − 4. Both synthases displayed similar substrate specificities for incorporating 3HB and mcl-HA units into PHA. The ability of PhaC1 Ps-1 to confer PHA synthesis, however, appeared reduced compared to that of PhaC1 Ps-2 , since cells harboring PhaC1 Ps-1 accumulated 2.5 to 4.6 times less PHA than cells expressing PhaC1 Ps-2 . Primary sequence analysis revealed that PhaC1 Ps-1 had markedly diverged from the other PHA synthases with a relatively high substitution rate (14.9 vs 2% within PhaC1 Ps-2 ). The mutations affected a highly conserved C-terminal region and the surroundings of the essential active site cysteine (Cys296) with a loss of hydrophobicity. This led us to predict that if phaC1 Ps-1 produces a protein product in the native strain, it is likely that PhaC1 Ps-1 may be destined for elimination by the accumulation of inactivating mutations, although its specialization to accommodate different substrates cannot be eliminated.
Polyhydroxyalkanoate production in Pseudomonas putida from alkanoic acids of varying lengths
PLOS ONE, 2023
Many studies have been conducted to produce microbial polyhydroxyalkanoates (PHA), a biopolymer, from Pseudomonas sp. fed with various alkanoic acids. Because this previous data was collected using methodologies that varied in critical aspects, such as culture media and size range of alkanoic acids, it has been difficult to compare the results for a thorough understanding of the relationship between feedstock and PHA production. Therefore, this study utilized consistent culture media with a wide range of alkanoic acids (C7-C14) to produce medium chain length PHAs. Three strains of Pseudomonas putida (NRRL B-14875, KT2440, and GN112) were used, and growth, cell dry weight, PHA titer, monomer distribution, and molecular weights were all examined. It was determined that although all the strains produced similar PHA titers using C7-C9 alkanoic acids, significant differences were observed with the use of longer chain feedstocks. Specifically, KT2440 and its derivative GN112 produced higher PHA titers compared to B-14875 when fed longer chain alkanoates. We also compared several analytical techniques for determining amounts of PHA and found they produced different results. In addition, the use of an internal standard had a higher risk of calculating inaccurate concentrations compared to an external standard. These observations highlight the importance of considering this aspect of analysis when evaluating different studies.
Applied Microbiology and Biotechnology, 2006
In this study we examined polyhydroxyalkanoate (PHA) synthases phaC1 and phaC2 gene expression in two strains of Pseudomonas corrugata (Pc) grown in a minimum mineral medium with related (oleic acid and octanoate) or unrelated (glucose) carbon sources. Analysis of transcription was performed by Northern blot and conventional reverse transcriptase (RT) polymerase chain reaction (PCR). In addition, we developed a RT-real-time