Whole-genome comparison of high and low virulent Staphylococcus aureus isolates inducing implant-associated bone infections (original) (raw)

Molecular epidemiology of Staphylococcus aureus from implant orthopaedic infections: Ribotypes, agr polymorphism, leukocidal toxins and antibiotic resistance

Biomaterials, 2008

Staphylococcus aureus is a leading pathogen of implant-related infections. In the field of biomaterials a variety of alternative approaches are currently proposed for prophylaxis and treatment of implant infections, but little is known on the role of the different pathogenetic mechanisms and spreading strategies that lead selected S. aureus clones to prevail and become epidemic. This study aimed at identifying and characterizing the major clones in a collection of 200 S. aureus isolates from implant orthopaedic infections. Strain typing by automated ribotyping identified 98 distinct ribogroups. Ribogroups corresponded to specific accessory gene regulatory (agr) polymorphisms and possessed peculiar arrangements of toxins. The agr type II allele was more represented in epidemic clones, while agr type I in sporadic clones. A clear trend was observed, where epidemic clones resisted antibiotics more than sporadic ones. Conversely, the gene for lukD/lukE leukotoxin, found in 68% of the isolates, was unrelated to the level of clonal spreading. Surprisingly, the isolates of the most prevalent ribogroup were susceptible to almost all antibiotics and never possessed the lukD/lukE gene, thus suggesting the role of factors other than antibiotic resistance and the here investigated toxins in driving the major epidemic clone to the larger success.

Virulence Determinants in Staphylococcus aureus Clones Causing Osteomyelitis in Italy

Frontiers in Microbiology, 2022

Staphylococcus aureus is the most common pathogen causing osteomyelitis (OM). The aim of this study was to explore the clonal complex (CC) distribution and the pattern of virulence determinants of S. aureus isolates from OM in Italy. Whole-genome sequencing was performed on 83 S. aureus isolates from OM cases in six hospitals. Antibiotic susceptibility tests showed that 30.1% of the isolates were methicillin-resistant S. aureus (MRSA). The most frequent CCs detected were CC22, CC5, CC8, CC30, and CC15, which represent the most common lineages circulating in Italian hospitals. MRSA were limited in the number of lineages (CC22, CC5, CC8, and CC1). Phylogenetic analysis followed the sequence type-CC groupings and revealed a non-uniform distribution of the isolates from the different hospitals. No significant difference in the mean number of virulence genes carried by MRSA or MSSA isolates was observed. Some virulence genes, namely cna, fib, fnbA, coa, lukD, lukE, sak, and tst, were cor...

Emerging pathogenetic mechanisms of the implant-related osteomyelitis by Staphylococcus aureus

The International Journal of Artificial Organs, 2011

Implant-related osteomyelitis is a severe and deep infection of bone that arises and develops all around an implant. Staphylococcus aureus is the first cause of osteomyelitis, whether implant-related or not. Bone is an optimal substratum for S. aureus, since this bacterium expresses various adhesins by which can adhere to bone proteins and to the biomaterial surfaces coated with the proteins of the host extracellular matrix. S. aureus is able not only to colonize bone tissues, but also to invade and disrupt them by entering bone cells and inducing cell death and osteolysis. Here we illustrate the pathogenetic mechanisms that can explain how the osteomyelitis sets in and develops around an implant.

Draft Genome Sequence of Isolate Staphylococcus aureus LHSKBClinical, Isolated from an Infected Hip

Genome announcements, 2015

We report here the genome sequence of a clinical isolate of Staphylococcus aureus from an orthopedic infection. Phenotypically diverse Staphylococcus aureus strains are associated with orthopedic infections and subsequent implant failure, and some are highly resistant to antibiotics. This genome sequence will support further analyses of strains causing orthopedic infections.