Histopathological study of the maternal exposure to the biologically produced silver nanoparticles on different organs of the offspring (original) (raw)
2020, Naunyn-Schmiedeberg's Archives of Pharmacology
This research for the first time presents the possibility of crossing the biologically produced SNPs through the placenta to different organs of rat offspring. SNPs were produced using Fusarium oxysporum. After adding 1 mmol final concentration of silver nitrate solution to the culture supernatant and 5 min heating, SNPs were produced, and their production was proved using visible spectrum, transmission electron microscope (TEM), and X-ray diffraction (XRD) analyses. SNPs were washed, and their concentration determined using inductively coupled plasma (ICP) instrument. SNPs were used for 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and after determination of their half maximal inhibitory concentration (IC 50) dose, their toxic and nontoxic doses were determined and used for in vivo studies. A total of 24 female rats, after detection of their vaginal plugs, were divided into 3 groups each having 8 members. A control group was treated with normal saline. The other two groups were treated by toxic and nontoxic doses of SNPs, respectively. After delivery and breastfeeding, the pups were scarified, and their organs were collected and analyzed using histological examinations. Results showed that SNPs had a maximum absorbance peak around 450 nm, with polygonal and round shapes. XRD results confirmed the presence of SNPs. The concentration of the SNPs after washing was 19 ppm/mL based on the ICP results. MTT assay results showed that SNPs had a dose-dependent toxic effect. Histopathological examination results showed that SNPs could pass through the placenta; both their nontoxic and toxic doses induced somehow mild alternations in the liver, kidney, testis, and ovary and had no effects on the brains of the rat offspring. In conclusions, the use of the biologically produced SNPs should be limited during pregnancy and breastfeeding.