Design and performance of the prototype Schwarzschild-Couder Telescope camera (original) (raw)
Related papers
Schwarzschild-Couder Telescope for The Cherenkov Telescope Array
Ground-based and Airborne Telescopes V, 2014
The Cherenkov Telescope Array (CTA) is the next major ground-based observatory for gamma-ray astronomy. With CTA gamma-ray sources will be studied in the very-high energy gamma-ray range of a few tens of GeV to 100 TeV with up to ten times better sensitivity than available with current generation instruments. We discuss the proposed US contribution to CTA that comprises imaging atmospheric Cherenkov telescope with Schwarzschild-Couder (SC) optics. Key features of the SC telescope are a wide field of view of eight degrees, a finely pixelated camera with silicon photomultipliers as photon detectors, and a compact and power efficient 1 GS/s readout. The progress in both the optical system and camera development are discussed in this paper.
Ground-based and Airborne Telescopes VII, 2018
The Gamma-ray Cherenkov Telescope (GCT) is one of the telescopes proposed for the Small Sized Telescope (SST) section of CTA. Based on a dual-mirror Schwarzschild-Couder design, which allows for more compact telescopes and cameras than the usual single-mirror designs, it will be equipped with a Compact High-Energy Camera (CHEC) based on silicon photomultipliers (SiPM). In 2015, the GCT prototype was the first dual-mirror telescope constructed in the prospect of CTA to record Cherenkov light on the night sky. Further tests and observations have been performed since then. This report describes the current status of the GCT, the results of tests performed to demonstrate its compliance with CTA requirements, and the optimisation of the design for mass production. The GCT collaboration, including teams from Australia, France, Germany, Japan, the Netherlands and the United Kingdom, plans to install the first telescopes and cameras on site in Chile for 2019-2020 as part of the CTA pre-production phase, and to contribute to the subsequent CTA production phase.
Development of the camera for the large size telescopes of the Cherenkov Telescope Array
The Large Size Telescopes, LSTs, located at the center of the Cherenkov Telescope Array, CTA, will be sensitive for low energy gamma-rays. The camera on the LST focal plane is optimized to detect low energy events based on a high photon detection efficiency and high speed electronics. Also the trigger system is designed to detect low energy showers as much as possible. In addition, the camera is required to work stably without maintenance in a few tens of years. In this contribution we present the design of the camera for the first LST and the status of its development and production.
A Compact High Energy Camera for the Cherenkov Telescope Array
The Compact High Energy Camera (CHEC) is a camera-development project involving UK, US, Japanese and Dutch institutes for the dual-mirror Small-Sized Telescopes (SST-2M) of the Cherenkov Telescope Array (CTA). Two CHEC prototypes, based on different photosensors are funded and will be assembled and tested in the UK over the next ≈18 months. CHEC is designed to record flashes of Cherenkov light lasting from a few to a hundred nanoseconds, with typical RMS image width and length of ∼ 0.2 • × 1.0 • , and has a 9 • field of view. The physical camera geometry is dictated by the telescope optics: a curved focal surface with radius of curvature 1 m and diameter ∼35 cm is required. CHEC is designed to work with both the ASTRI and GATE SST-2M telescope structures and will include an internal LED flasher system for calibration. The first CHEC prototype will be based on multi-anode photomultipliers (MAPMs) and the second on silicon photomultipliers (SiPMs or MPPCs). The first prototype will soon be installed on the ASTRI SST-2M prototype structure on Mt. Etna.
Verification of the optical system of the 9.7-m prototype Schwarzschild-Couder Telescope
Optical System Alignment, Tolerancing, and Verification XIII, 2020
For the first time in the history of ground-based γ-ray astronomy, the on-axis performance of the dual mirror, aspheric, aplanatic Schwarzschild-Couder optical system has been demonstrated in a 9.7-m aperture imaging atmospheric Cherenkov telescope. The novel design of the prototype Schwarzschild-Couder Telescope (pSCT) is motivated by the need of the next-generation Cherenkov Telescope Array (CTA) observatory to have the ability to perform wide (≥ 8 •) field-of-view observations simultaneously with superior imaging of atmospheric cascades (resolution of 0.067 • per pixel or better). The pSCT design, if implemented in the CTA installation, has the potential to improve significantly both the γ-ray angular resolution and the off-axis sensitivity of the observatory, reaching nearly the theoretical limit of the technique and thereby making a major impact on the CTA observatory sky survey programs, follow-up observations of multi-messenger transients with poorly known initial localization, as well as on the spatially resolved spectroscopic studies of extended γ-ray sources. This contribution reports on the initial alignment procedures and point-spread-function results for the challenging segmented aspheric primary and secondary mirrors of the pSCT.