Effect of organoclay content and molecular weight on cellulose acetate nanocomposites properties (original) (raw)

Abstract

Nanocomposites based on cellulose acetate (CA), a commercial organoclay (Cloisite30B) and triethyl citrate (TEC) were obtained using a solution casting method. Different nanocomposites were prepared according to different organoclay contents (2.5, 5.0, 7.5 and 10.0 wt.%) and molecular weight of cellulose acetate (Mn 30,000 and 50,000). The properties of the nanocomposites were evaluated by means of opacity index, X-ray diffraction (XRD), differential scanning calorimetry (DSC), mechanical (modulus of elasticity, tensile strength and elongation at break), scanning electron microscopy (SEM) and oxygen transmission rate (OTR) measurements. All obtained nanocomposites showed the intercalation of polymer inside the clay structure which was slightly favored for nanocomposites with CA 30,000. Important changes on the opacity index, mechanical properties, glass transition and melting temperatures, crystalline fraction, oxygen permeability and fracture morphology of nanocomposite films were observed according to the increase of organoclay content. On the other hand, intercalation level and oxygen permeability showed some differences with the molecular weight of cellulose acetate.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (33)

  1. Means followed by the same letter are not significantly different (p < 0.05) based on the analysis of variance and Fisher's LSD test. References
  2. Sozer N, Kokini JL. Nanotechnology and its applications in the food sector. Trends Biotechnol 2009;27:82e9.
  3. Rooney ML. Introduction to active food packaging technologies. In: Han JH, editor. Innovations in food packaging. San Diego: Elsevier Academic Press; 2005. p. 60e79.
  4. Darder M, Aranda P, Ruiz-Hitzky E. Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv Mater 2007;19: 1309e19.
  5. Darder M, Colilla M, Ruiz-Hitzky E. BiopolymerÀclay nanocomposites based on chitosan intercalated in montmorillonite. Chem Mater 2003;15:3774e80.
  6. Lagaron JM, Lopez-Rubio A. Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends Food Sci Tech 2011. http://dx.doi.org/ 10.1016/j.tifs.2011.01.007.
  7. Luo Y-B, Li W-D, Wang X-L, Xu D-Y, Wang Y-Z. Preparation and properties of nanocomposites based on poly(lactic acid) and functionalized TiO 2 . Acta Mater 2009;57:3182e91.
  8. Rizvi R, Khan O, Naguib HE. Development and characterization of solid and porous polylactide-multiwall carbon nanotube composites. Polym Eng Sci 2010;51:43e53.
  9. Famáa LM, Pettarinc V, Goyanesa SN, Bernalb CR. Starch/multi-walled carbon nanotubes composites with improved mechanical properties. Carboh Polym 2011;83:1226e31.
  10. Ibrahim SM. Characterization, mechanical, and thermal properties of gamma irradiated starch films reinforced with mineral clay. J Appl Polym Sci 2011; 119:985e92.
  11. Sanchez-Garcia MD, Lagaron JM, Hoa SV. Effect of addition of carbon nani- fibers and carbon nanotubes on properties of thermoplastic biopolymers. Comp Sci Technol 2010;70:1095e105.
  12. Buzarovska A, Grozdanov A, Avella M, Gentile G, Errico M. Poly(- hydroxybutyrate-co-hydroxyvalerate)/titanium dioxide nanocomposites: a degradation study. J Appl Polym Sci 2009;114:3118e24.
  13. Li M, Kim I-H, Jeong YG. Cellulose acetate/multiwalled carbon nanotube nanocomposites with improved mechanical, thermal, and electrical proper- ties. J Appl Polym Sci 2010;118:2475e81.
  14. Delhom CD, White-Ghoorahoo LA, Pang SS. Development and characterization of cellulose/clay nanocomposites. Composites Part B 2010;41:475e81.
  15. Zhang K, Xu J, Wang KY, Cheng L, Wang J, Liu B. Preparation and character- ization of chitosan nanocomposites with vermiculite of different modification. Polym Deg Stab 2009;94:2121e7.
  16. Li L-H, Deng J-C, Deng H-R, Liu Z-L, Xin L. Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydr Res 2010;345: 994e8.
  17. Uddin F. Clays, nanoclays, and montmorillonite minerals. Metall Mat Trans A 2008;39A:2804e14.
  18. Vazquez A, López M, Kortaberria G, Martín L, Mondragon I. Modification of montmorillonite with cationic surfactants. Thermal and chemical analysis including CEC determination. Appl Clay Sci 2008;41:24e36.
  19. Rimdusit S, Jingjid S, Damrongsakkul S, Tiptipakorn S, Takeichi T. Biode- gradability and property characterizations of methyl cellulose: effect of nanocompositing and chemical crosslinking. Carboh Polym 2008;72: 444e55.
  20. Petersson L, Mathew AP, Oksman K. Dispersion and properties of cellulose nanowhiskers and layered silicates in cellulose acetate butyrate nano- composites. J Appl Polym Sci 2009;112:2001e9.
  21. Park H-M, Liang X, Mohanty AK, Misra M, Drzal LT. Effect of compatibilizer on nanostructure of the biodegradable cellulose acetate/organoclay nano- composites. Macromolecules 2004;37:9076e82.
  22. Park H-M, Misra M, Drzal LT, Mohanty AK. "Green" nanocomposites from cellulose acetate bioplastic and clay: effect of eco-friendly triethyl citrate plasticizer. Biomacromolecules 2004;5:2281e8.
  23. Wibowo AC, Misra M, Park H-M, Drzal LT, Schalek R, Mohanty AK. Biode- gradable nanocomposites from cellulose acetate: mechanical, morphological, and thermal properties. Composites Part A 2006;37:1428e33.
  24. Rodríguez FJ, Galotto MJ, Guarda A, Bruna JE. Modification of cellulose acetate films using nanofillers based on organoclays. J Food Eng 2011;110:262e8.
  25. Zidelkheir B, Abdelgoad M. Effect of surfactant agent upon the structure of montmorillonite. X-Ray diffraction and thermal analysis. J Therm Anal Calor 2008;94:181e7.
  26. Gómez-Estaca J, Montero P, Fernández-Martín F, Alemán A, Gómez- Guillén MC. Physical and chemical properties of tuna-skin and bovine-hide gelatin films with added aqueous oregano and rosemary extracts. Food Hydrocol 2009;23:1334e41.
  27. Chiffelle G, Correa P. Modificación de montmorillonita con quitosano.
  28. Plackett D, Anturi H, Hedenqvist M, Ankerfors M, Gällstedt M, Lindström T, et al. Physical properties and morphology of films prepared from micro- fibrillated cellulose and microfibrillated cellulose in combination with amylopectin. J Appl Polym Sci 2010;117:3601e9.
  29. Tunç S, Duman O. Preparation of active antimicrobial methyl cellulose/ carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release. LWT -Food Sci Tech 2011;44:165e472.
  30. Paiva LBD, Morales AR, Guimaraes TR. Structural and optical properties of polypropylene-montmorillonite nanocomposites. Mat Sci Eng A 2007;447: 261e5.
  31. Bruna JE, Peñaloza A, Guarda A, Rodríguez F, Galotto MJ. Development of MtCu2þ/LDPE nanocomposites with antimicrobial activity for potential use in food packaging. Appl Clay Sci 2012;58:79e87.
  32. Solovyov S, Golmen A. Mass transport & reactive barrier in packaging. Theory, applications & design. Pennsylvania: DEStech Publications; 2008.
  33. Fu Y-J, Hu C-C, Lee K-R, Tsai H-A, Ruaan R-C, Lai J-Y. The correlation between free volume and gas separation properties in high molecular weight poly(methyl methacrylate) membranes. Eur Polym J 2007;43: 959e67.