Global brain health modulates the impact of lesion damage on post-stroke sensorimotor outcomes (original) (raw)

AI-generated Abstract

Sensorimotor performance after stroke is strongly related to focal injury measures such as corticospinal tract lesion load. However, the role of global brain health is less clear. Here, we examined the impact of brain age, a measure of neurobiological aging derived from whole brain structural neuroimaging, on sensorimotor outcomes. We hypothesized that stroke lesion damage would result in older brain age, which would in turn be associated with poorer sensorimotor outcomes. We also expected that brain age would mediate the impact of lesion damage on sensorimotor outcomes and that these relationships would be driven by post-stroke secondary atrophy (e.g., strongest in the ipsilesional hemisphere in chronic stroke). We further hypothesized that structural brain resilience, which we define in the context of stroke as the brain's ability to maintain its global integrity despite focal lesion damage, would differentiate people with better versus worse outcomes. We analyzed cross-sectional high-resolution brain MRI and outcomes data from 963 people with stroke from 38 cohorts worldwide using robust linear mixed-effects regressions to examine the relationship between sensorimotor behavior, lesion damage, and brain age. We used a mediation analysis to examine whether brain age mediates the impact of lesion damage on stroke outcomes and if associations are driven by ipsilesional measures in chronic (≥180 days) stroke. We assessed the impact of brain resilience on sensorimotor outcome using logistic regression with propensity score matching on lesion damage. Stroke lesion damage was associated with older brain age, which in turn was associated with poorer sensorimotor outcomes. Brain age mediated the impact of corticospinal tract lesion load on sensorimotor outcomes most strongly in the ipsilesional hemisphere in chronic stroke. Greater brain resilience, as indexed by younger brain age, explained why people have better versus worse sensorimotor outcomes when lesion damage was fixed. We present novel evidence that global brain health is associated with superior post-stroke sensorimotor outcomes and modifies the impact of focal damage. This relationship appears to be due to post-stroke secondary degeneration. Brain resilience provides insight into why some people have better outcomes after stroke, despite similar amounts of focal injury. Inclusion of imaging-based assessments of global brain health may improve prediction of post-stroke sensorimotor outcomes compared to focal injury measures alone. This investigation is important because it introduces the potential to apply novel therapeutic interventions to prevent or slow brain aging from other fields (e.g., Alzheimer's disease) to stroke.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact