COVID-19 and Nanoscience in the Developing World: Rapid Detection and Remediation in Wastewater (original) (raw)

Point-of-Use Rapid Detection of SARS-CoV-2: Nanotechnology-Enabled Solutions for the COVID-19 Pandemic

International Journal of Molecular Sciences

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 pandemic that has been spreading around the world since December 2019. More than 10 million affected cases and more than half a million deaths have been reported so far, while no vaccine is yet available as a treatment. Considering the global healthcare urgency, several techniques, including whole genome sequencing and computed tomography imaging have been employed for diagnosing infected people. Considerable efforts are also directed at detecting and preventing different modes of community transmission. Among them is the rapid detection of virus presence on different surfaces with which people may come in contact. Detection based on non-contact optical techniques is very helpful in managing the spread of the virus, and to aid in the disinfection of surfaces. Nanomaterial-based methods are proven suitable for rapid detection. Given the immense need for science led innovative solutions, this manuscript c...

Application of Nanotechnology in COVID-19 Infection: Findings and Limitations

Journal of Nanotheranostics

There is an urgent need to address the global mortality of the COVID-19 pandemic, as it reached 6.3 million as of July 2022. As such, the experts recommended the mass diagnosis of SARS-CoV-2 infection at an early stage using nanotechnology-based sensitive diagnostic approaches. The development of nanobiosensors for Point-of-Care (POC) sampling of COVID-19 could ensure mass detection without the need for sophisticated laboratories or expert personnel. The use of Artificial Intelligence (AI) techniques for POC detection was also proposed. In addition, the utilization of various antiviral nanomaterials such as Silver Nanoparticles (AgNPs) for the development of masks for personal protection mitigates viral transmission. Nowadays, nano-assisted vaccines have been approved for emergency use, but their safety and effectiveness in the mutant strain of the SARS-CoV-2 virus remain challenging. Methodology: Updated literature was sourced from various research indexing databases such as PubMed...

Fate of COVID-19 Occurrences in Wastewater Systems: Emerging Detection and Treatment Technologies—A Review

Water

The coronavirus (COVID-19) pandemic is currently posing a significant threat to the world’s public health and social-economic growth. Despite the rigorous international lockdown and quarantine efforts, the rate of COVID-19 infectious cases remains exceptionally high. Notwithstanding, the end route of COVID-19, together with emerging contaminants’ (antibiotics, pharmaceuticals, nanoplastics, pesticide, etc.) occurrence in wastewater treatment plants (WWTPs), poses a great challenge in wastewater settings. Therefore, this paper seeks to review an inter-disciplinary and technological approach as a roadmap for the water and wastewater settings to help fight COVID-19 and future waves of pandemics. This study explored wastewater–based epidemiology (WBE) potential for detecting SARS-CoV-2 and its metabolites in wastewater settings. Furthermore, the prospects of integrating innovative and robust technologies such as magnetic nanotechnology, advanced oxidation process, biosensors, and membra...

Superior possibilities and upcoming horizons for nanoscience in COVID-19: noteworthy approach for effective diagnostics and management of SARS-CoV-2 outbreak

The outbreak of COVID-19 has caused great havoc and affected many parts of the world. It has imposed a great challenge to the medical and health fraternity with its ability to continue mutating and increasing the transmission rate. Some challenges include the availability of current knowledge of active drugs against the virus, mode of delivery of the medicaments, its diagnosis, which are relatively limited and do not suffice for further prognosis. One recently developed drug delivery system called nanoparticles is currently being utilized in combating COVID-19. This article highlights the existing methods for diagnosis of COVID-19 such as computed tomography scan, reverse transcription-polymerase chain reaction, nucleic acid sequencing, immunoassay, point-of-care test, detection from breath, nanotechnology-based bio-sensors, viral antigen detection, microfluidic device, magnetic nanosensor, magnetic resonance platform and internet-of-things biosensors. The latest detection strategy based on nanotechnology, biosensor, is said to produce satisfactory results in recognizing SARS-CoV-2 virus. It also highlights the successes in the research and development of COVID-19 treatments and vaccines that are already in use. In addition, there are a number of nanovaccines and nanomedicines currently in clinical trials that have the potential to target COVID-19.

Nanotechnology-based approaches in the fight against SARS-CoV-2

AIMS Microbiology, 2021

The COVID-19 pandemic caused by highly-infectious virus namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in infection of millions of individuals and deaths across the world. The need of an hour is to find the innovative solution for diagnosis, prevention, and cure of the COVID-19 disease. Nanotechnology is emerging as one of the important tool for the same. In the present review we discuss the applications of nanotechnology-based approaches that are being implemented to speed up the development of diagnostic kits for SARS-CoV-2, development of personal protective equipments, and development of therapeutics of COVID-19 especially the vaccine development.

Application of Nanobiotechnology for Early Diagnosis of SARS-CoV-2 Infection in the COVID-19 Pandemic

Applied Microbiology and Biotechnology, 2021

A most discussed topic of the new decade, COVID-19 is an infectious disease caused by the recently discovered SARS-CoV-2. With an exceedingly high transmission rate, COVID-19 has affected almost all the countries in the world. Absent any vaccine or specific treatment, the humanity is left with nothing but the legacy method of quarantine. However, quarantine can only be effective when combined with early diagnosis of suspected cases. With their high sensitivity and unmatched specificity, biosen-sors have become an area of interest for development of novel diagnostic methods. Compared to the more traditional diagnostics, nanobiotechnology introduces biosensors as different diagnostics with greater versatility in application. Today, a growing number of analytes are being accurately identified by these nanoscopic sensing machines. Several reports of validated application with real samples further strengthen this idea. As of recent, there has been a rise in the number of studies on portable biosensors. Despite the slow progression, certain devices with embedded biosensors have managed to be of diagnostic value in several countries. The perceptible increase in development of mobile platforms has revolutionized the healthcare delivery system in the new millennium. The present article reviews the most recent advancements in development of diagnostic nanobiosensors and their application in the clinical fields.

Nanodiagnostics to Face SARS-CoV-2 and Future Pandemics: From an Idea to the Market and Beyond

ACS Nano, 2021

The COVID-19 pandemic made clear how our society requires quickly available tools to address emerging healthcare issues. Diagnostic assays and devices are used every day to screen for COVID-19 positive patients, with the aim to decide the appropriate treatment and containment measures. In this context, we would have expected to see the use of the most recent diagnostic technologies worldwide, including the advanced ones such as nano-biosensors capable to provide faster, more sensitive, cheaper, and high-throughput results than the standard polymerase chain reaction and lateral flow assays. Here we discuss why that has not been the case and why all the exciting diagnostic strategies published on a daily basis in peer-reviewed journals are not yet successful in reaching the market and being implemented in the clinical practice.

Nanotechnology-Based Approaches for the Detection of SARS-CoV-2

Frontiers in Nanotechnology, 2020

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a pandemic has been validated as an extreme clinical calamity and has affected several socio-economic activities globally. Proven transmission of this virus occurs through airborne droplets from an infected person. The recent upsurge in the number of infected individuals has already exceeded the number of intensive care beds available to patients. These extraordinary circumstances have elicited the need for the development of diagnostic tools for the detection of the virus and, hence, prevent the spread of the disease. Early diagnosis and effective immediate treatment can reduce and prevent an increase in the number of cases. Conventional methods of detection such as quantitative real-time polymerase chain reaction and chest computed tomography scans have been used extensively for diagnostic purposes. However, these present several challenges, including prolonged assay requirements, labor-intensive test...

Developing Biosensors for SARS-CoV-2 Wastewater-Based Epidemiology: A Systematic Review of Trends, Limitations and Future Perspectives

Sustainability

Wastewater-based epidemiology (WBE) permits the sustainable surveillance of pathogens in large populations and does not discriminate between symptomatic and asymptomatic groups. WBE allows health authorities and policymakers to make swift decisions to limit the impact of local and regional disease outbreaks, minimise the spread of infection and mitigate the effects of pathogen importation. Biosensors are an exciting addition to conventional WBE analytical approaches. Combined with sentinel surveillance programs, biosensors can be reactive to novel variants of a virus in the community. However, progress developing biosensors for wastewater surveillance is severely limited compared to advances in clinical diagnostics, with a lack of well-developed biosensors currently being available. Whilst the field of biosensors is vast, this review focuses on trends in monitoring SARS-CoV-2 in wastewater over a key period (2020–2021). We explore the complexities involved in sampling within wastewa...

New insights from nanotechnology in SARS-CoV-2 detection, treatment strategy, and prevention

Materials Today Chemistry

The recent outbreak of SARS-CoV-2 resulted into the deadly COVID-19 pandemic, which has made a profound impact on mankind and the world health care system. SARS-CoV-2 is mainly transmitted within the population via symptomatic carriers, enters the host cell via ACE2 and TMPSSR2 receptors and damages the organs. The standard diagnostic tests and treatment methods implemented lack required efficiency to beat SARS-CoV-2 in the race of its spreading. The most prominently used diagnostic test,reverse transcription-polymerase chain reaction (a nucleic acid-based method), has limitations including a prolonged time taken to reveal results, limited sensitivity, a high rate of false negative results, and lacking specificity due to a homology with other viruses. Furthermore, as part of the treatment, antiviral drugs such as remdesivir, favipiravir, lopinavir/ritonavir, chloroquine, daclatasvir, atazanavir, and many more have been tested clinically to check their potency for the treatment of SARS-CoV-2 but none of these antiviral drugs are the definitive cure or suitable prophylaxis. Thus, it is always required to combat SARS-CoV-2 spread and infection for a better and precise prognosis. This review answers the above mentioned challenges by employing nanomedicine for the development of improved detection, treatment, and prevention strategies for SARS-CoV-2. In this review, nanotechnology-based detection methods such as colorimetric assays, photothermal biosensors, molecularly imprinted nanoparticles sensors, electrochemical nanoimmunosensors, aptamer-based biosensors have been discussed. Furthermore, nanotechnology-based treatment strategies involving polymeric nanoparticles, metallic nanoparticles, lipid nanoparticles, and nanocarrier-based antiviral siRNA delivery have been depicted. Moreover, SARS-CoV-2 prevention strategies, which include the nanotechnology for upgrading personal protective equipment, facemasks, ocular protection gears, and nanopolymer-based disinfectants, have been also reviewed. This review will provide a one-site informative platform for researchers to explore the crucial role of nanomedicine in managing the COVID-19 curse more effectively.