Relationships within Mcneillia Indicate a Complex Evolutionary History and Reveal a New Species of Minuartiella (Caryophyllaceae, Alsinoideae) (original) (raw)
Related papers
A New Lineage‐Based Tribal Classification of the Family Caryophyllaceae
International Journal of Plant Sciences, 2010
Understanding the relationships within the Caryophyllaceae has been difficult, in part because of arbitrarily and poorly defined genera and difficulty in determining phylogenetically useful morphological characters. This study represents the most complete phylogenetic analysis of the family to date, with particular focus on the genera and relationships within the large subfamily Alsinoideae, using molecular characters to examine the monophyly of taxa and the validity of the current taxonomy as well as to resolve the obscure origins of divergent taxa such as the endemic Hawaiian Schiedea. Maximum parsimony and maximum likelihood analyses of three chloroplast gene regions (matK, trnL-F, and rps16) from 81 newly sampled and 65 GenBank specimens reveal that several tribes and genera, especially within the Alsinoideae, are not monophyletic. Large genera such as Arenaria and Minuartia are polyphyletic, as are several smaller genera. The phylogenies reveal that the closest relatives to Schiedea are a pair of widespread, largely Arctic taxa, Honckenya peploides and Wilhelmsia physodes. More importantly, the three traditional subfamilies (Alsinoideae, Caryophylloideae, and Paronychioideae) are not reflective of natural groups; we propose abandoning this classification in favor of a new system that recognizes major lineages of the molecular phylogeny at the tribal level. A new tribe, Eremogoneae Rabeler & W.L. Wagner, is described here.
Taxon
Assigning correct names to taxa is a challenging goal in the taxonomy of many groups within the Caryophyllaceae. This challenge is most serious in tribe Caryophylleae since the supposed genera seem to be highly artificial, and the available morphological evidence cannot effectively be used for delimitation and exact determination of taxa. The main goal of the present study was to reassess the monophyly of the genera currently recognized in this tribe using molecular phylogenetic data. We used the sequences of nuclear ribosomal internal transcribed spacer (ITS) and the chloroplast gene rps16 for 135 and 94 accessions, respectively, representing all 16 genera currently recognized in the tribe Caryophylleae, with a rich sampling of Gypsophila as one of the most heterogeneous groups in the tribe. Phylogenetic trees were reconstructed using maximum parsimony and Bayesian inference methods. The results show that most of the large genera of Caryophylleae are not monophyletic. As a result, we propose a new classification system matching both molecular phylogenetic and morphological evidence. The main taxonomic conclusions include: (1) the description of three new genera, (2) treating five small genera as synonyms, (3) resurrecting the genus Heterochroa with six species, and (4) proposing 23 new combinations plus 2 replacement names at the specific level. As a result, we recognize 14 genera in Caryophylleae. A diagnostic key to all genera of Caryophylleae is provided.
Taxon, 2022
The tribe Alsineae is a large monophyletic group in the family Caryophyllaceae especially found across Eurasia and the Americas, but with a center of diversity in the Mediterranean region. Several previous molecular phylogenetic studies have focused on the delimitation of genera and tribes of Caryophyllaceae, especially the subfamily Alsinoideae or the tribe Alsineae in a broader sense than now recognized. However, there are still many open questions regarding the subdivision of the tribe and genus delimitation. In the present study, we sampled 191 (148 species) and 149 (125 species) accessions of Alsineae representing almost all (Adenonema and Pseudocerastium were not available to us) recognized genera in the tribe for nuclear DNA internal transcribed spacer (ITS) and plastid marker rps16 sequences, respectively. A combined matrix of 103 species was built for taxa with both sequences available. Maximum parsimony and Bayesian inference analyses retrieved Cerastium and Stellaria (including Myosoton) as the largest monophyletic genera, while other genera were medium-sized (10-20 spp.) or small (<10 spp.). Our expanded sampling of Pseudostellaria and its relatives suggests a broader circumscription of this genus. Major divergence in morphology, particularly of the seeds, observed in the "Protostellaria"-clade, allows recognition of some taxonomic changes. A total of 16 genera are recognized in Alsineae including Cerastium,
PhytoKeys
The basal position of the small American genus Microtea within the core Caryophyllales was suggested only recently in accordance with molecular phylogeny. However, the specific relationships within the genus were not traced. The results of our phylogenetic analysis based on the matK chloroplast gene suggest the monophyly of Microtea, and Ancistrocarpus and other related genera should be included in it. Microtea is divided into two major sister clades: clade A consisting of M.glochidiata, M.maypurensis and M.tenuifolia, and clade B comprising M.debilis, M.sulcicaulis, M.scabrida, M.celosioides, and M.papillosa. The nrDNA dataset (ITS), although containing only a limited number of accessions, shows the same species number in clade A, and the remaining species studied (M.debilis, M.scabrida and M.celosioides) form clade B. Subgeneric status is assigned to clades A and B corresponding with the names Microteasubgen.Ancistrocarpus subgen. nov. and Microteasubgen.Microtea, respectively. Th...
The basal position of the small American genus Microtea within the core Caryophyllales was suggested only recently in accordance with molecular phylogeny. However, the specific relationships within the genus were not traced. The results of our phylogenetic analysis based on the matK chloroplast gene suggest the monophyly of Microtea, and Ancistrocarpus and other related genera should be included in it. Microtea is divided into two major sister clades: clade A consisting of M. glochidiata, M. maypurensis and M. tenuifolia, and clade B comprising M. debilis, M. sulcicaulis, M. scabrida, M. celosioides, and M. papillosa. The nrDNA dataset (ITS), although containing only a limited number of accessions, shows the same species number in clade A, and the remaining species studied (M. debilis, M. scabrida and M. celosioides) form clade B. Subgeneric status is assigned to clades A and B corresponding with the names Microtea subgen. Ancistrocarpus subgen. nov. and Microtea subgen. Microtea, respectively. The diagnostic characters at the subgeneric level are as follows: length of pedicels, number of flowers at each node, number of stamens and styles. A multivariate analysis of 13 distinguishing morphological characters supports the results of phylogenetic analysis. All species have similar pericarp and seed ultrasculpture and anatomy, and they share the reticulate pericarp surface (independent of presence or absence of finger-shaped outgrowths on its surface) and rugose or slightly alveolate seed ultrasculpture. On the basis of morphological characters, we
The basal position of the small American genus Microtea within the core Caryophyllales was suggested only recently in accordance with molecular phylogeny. However, the specific relationships within the genus were not traced. The results of our phylogenetic analysis based on the matK chloroplast gene suggest the monophyly of Microtea, and Ancistrocarpus and other related genera should be included in it. Microtea is divided into two major sister clades: clade A consisting of M. glochidiata, M. maypurensis and M. tenuifolia, and clade B comprising M. debilis, M. sulcicaulis, M. scabrida, M. celosioides, and M. papillosa. The nrDNA dataset (ITS), although containing only a limited number of accessions, shows the same species number in clade A, and the remaining species studied (M. debilis, M. scabrida and M. celosioides) form clade B. Subgeneric status is assigned to clades A and B corresponding with the names Microtea subgen. Ancistrocarpus subgen. nov. and Microtea subgen. Microtea, respectively. The diagnostic characters at the subgeneric level are as follows: length of pedicels, number of flowers at each node, number of stamens and styles. A multivariate analysis of 13 distinguishing morphological characters supports the results of phylogenetic analysis. All species have similar pericarp and seed ultrasculpture and anatomy, and they share the reticulate pericarp surface (independent of presence or absence of finger-shaped outgrowths on its surface) and rugose or slightly alveolate seed ultrasculpture. On the basis of morphological characters, we
The basal position of the small American genus Microtea within the core Caryophyllales was suggested only recently in accordance with molecular phylogeny. However, the specific relationships within the genus were not traced. The results of our phylogenetic analysis based on the matK chloroplast gene suggest the monophyly of Microtea, and Ancistrocarpus and other related genera should be included in it. Microtea is divided into two major sister clades: clade A consisting of M. glochidiata, M. maypurensis and M. tenuifolia, and clade B comprising M. debilis, M. sulcicaulis, M. scabrida, M. celosioides, and M. papillosa. The nrDNA dataset (ITS), although containing only a limited number of accessions, shows the same species number in clade A, and the remaining species studied (M. debilis, M. scabrida and M. celosioides) form clade B. Subgeneric status is assigned to clades A and B corresponding with the names Microtea subgen. Ancistrocarpus subgen. nov. and Microtea subgen. Microtea, respectively. The diagnostic characters at the subgeneric level are as follows: length of pedicels, number of flowers at each node, number of stamens and styles. A multivariate analysis of 13 distinguishing morphological characters supports the results of phylogenetic analysis. All species have similar pericarp and seed ultrasculpture and anatomy, and they share the reticulate pericarp surface (independent of presence or absence of finger-shaped outgrowths on its surface) and rugose or slightly alveolate seed ultrasculpture. On the basis of morphological characters, we
The basal position of the small American genus Microtea within the core Caryophyllales was suggested only recently in accordance with molecular phylogeny. However, the specific relationships within the genus were not traced. The results of our phylogenetic analysis based on the matK chloroplast gene suggest the monophyly of Microtea, and Ancistrocarpus and other related genera should be included in it. Microtea is divided into two major sister clades: clade A consisting of M. glochidiata, M. maypurensis and M. tenuifolia, and clade B comprising M. debilis, M. sulcicaulis, M. scabrida, M. celosioides, and M. papillosa. The nrDNA dataset (ITS), although containing only a limited number of accessions, shows the same species number in clade A, and the remaining species studied (M. debilis, M. scabrida and M. celosioides) form clade B. Subgeneric status is assigned to clades A and B corresponding with the names Microtea subgen. Ancistrocarpus subgen. nov. and Microtea subgen. Microtea, respectively. The diagnostic characters at the subgeneric level are as follows: length of pedicels, number of flowers at each node, number of stamens and styles. A multivariate analysis of 13 distinguishing morphological characters supports the results of phylogenetic analysis. All species have similar pericarp and seed ultrasculpture and anatomy, and they share the reticulate pericarp surface (independent of presence or absence of finger-shaped outgrowths on its surface) and rugose or slightly alveolate seed ultrasculpture. On the basis of morphological characters, we
The basal position of the small American genus Microtea within the core Caryophyllales was suggested only recently in accordance with molecular phylogeny. However, the specific relationships within the genus were not traced. The results of our phylogenetic analysis based on the matK chloroplast gene suggest the monophyly of Microtea, and Ancistrocarpus and other related genera should be included in it. Microtea is divided into two major sister clades: clade A consisting of M. glochidiata, M. maypurensis and M. tenuifolia, and clade B comprising M. debilis, M. sulcicaulis, M. scabrida, M. celosioides, and M. papillosa. The nrDNA dataset (ITS), although containing only a limited number of accessions, shows the same species number in clade A, and the remaining species studied (M. debilis, M. scabrida and M. celosioides) form clade B. Subgeneric status is assigned to clades A and B corresponding with the names Microtea subgen. Ancistrocarpus subgen. nov. and Microtea subgen. Microtea, respectively. The diagnostic characters at the subgeneric level are as follows: length of pedicels, number of flowers at each node, number of stamens and styles. A multivariate analysis of 13 distinguishing morphological characters supports the results of phylogenetic analysis. All species have similar pericarp and seed ultrasculpture and anatomy, and they share the reticulate pericarp surface (independent of presence or absence of finger-shaped outgrowths on its surface) and rugose or slightly alveolate seed ultrasculpture. On the basis of morphological characters, we