Genome-wide transcriptomic analysis of a superior biomass-degrading strain of A. fumigatus revealed active lignocellulose-degrading genes (original) (raw)

Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei

BMC Genomics, 2017

Background: Second generation (2G) ethanol is produced by breaking down lignocellulosic biomass into fermentable sugars. In Brazil, sugarcane bagasse has been proposed as the lignocellulosic residue for this biofuel production. The enzymatic cocktails for the degradation of biomass-derived polysaccharides are mostly produced by fungi, such as Aspergillus niger and Trichoderma reesei. However, it is not yet fully understood how these microorganisms degrade plant biomass. In order to identify transcriptomic changes during steam-exploded bagasse (SEB) breakdown, we conducted a RNA-seq comparative transcriptome profiling of both fungi growing on SEB as carbon source. Results: Particular attention was focused on CAZymes, sugar transporters, transcription factors (TFs) and other proteins related to lignocellulose degradation. Although genes coding for the main enzymes involved in biomass deconstruction were expressed by both fungal strains since the beginning of the growth in SEB, significant differences were found in their expression profiles. The expression of these enzymes is mainly regulated at the transcription level, and A. niger and T. reesei also showed differences in TFs content and in their expression. Several sugar transporters that were induced in both fungal strains could be new players on biomass degradation besides their role in sugar uptake. Interestingly, our findings revealed that in both strains several genes that code for proteins of unknown function and pro-oxidant, antioxidant, and detoxification enzymes were induced during growth in SEB as carbon source, but their specific roles on lignocellulose degradation remain to be elucidated. Conclusions: This is the first report of a time-course experiment monitoring the degradation of pretreated bagasse by two important fungi using the RNA-seq technology. It was possible to identify a set of genes that might be applied in several biotechnology fields. The data suggest that these two microorganisms employ different strategies for biomass breakdown. This knowledge can be exploited for the rational design of enzymatic cocktails and 2G ethanol production improvement.

RNA-sequencing reveals the complexities of the transcriptional response to lignocellulosic biofuel substrates in Aspergillus niger

Fungal biology and biotechnology, 2014

Background: Saprobic fungi are the predominant industrial sources of Carbohydrate Active enZymes (CAZymes) used for the saccharification of lignocellulose during the production of second generation biofuels. The production of more effective enzyme cocktails is a key objective for efficient biofuel production. To achieve this objective, it is crucial to understand the response of fungi to lignocellulose substrates. Our previous study used RNA-seq to identify the genes induced in Aspergillus niger in response to wheat straw, a biofuel feedstock, and showed that the range of genes induced was greater than previously seen with simple inducers. Results: In this work we used RNA-seq to identify the genes induced in A. niger in response to short rotation coppice willow and compared this with the response to wheat straw from our previous study, at the same time-point. The response to willow showed a large increase in expression of genes encoding CAZymes. Genes encoding the major activities required to saccharify lignocellulose were induced on willow such as endoglucanases, cellobiohydrolases and xylanases. The transcriptome response to willow had many similarities with the response to straw with some significant differences in the expression levels of individual genes which are discussed in relation to differences in substrate composition or other factors. Differences in transcript levels include higher levels on wheat straw from genes encoding enzymes classified as members of GH62 (an arabinofuranosidase) and CE1 (a feruloyl esterase) CAZy families whereas two genes encoding endoglucanases classified as members of the GH5 family had higher transcript levels when exposed to willow. There were changes in the cocktail of enzymes secreted by A. niger when cultured with willow or straw. Assays for particular enzymes as well as saccharification assays were used to compare the enzyme activities of the cocktails. Wheat straw induced an enzyme cocktail that saccharified wheat straw to a greater extent than willow. Genes not encoding CAZymes were also induced on willow such as hydrophobins as well as genes of unknown function. Several genes were identified as promising targets for future study. Conclusions: By comparing this first study of the global transcriptional response of a fungus to willow with the response to straw, we have shown that the inducing lignocellulosic substrate has a marked effect upon the range of transcripts and enzymes expressed by A. niger. The use by industry of complex substrates such as wheat straw or willow could benefit efficient biofuel production.

Closely related fungi employ diverse enzymatic strategies to degrade plant biomass

Biotechnology for Biofuels, 2015

Background: Plant biomass is the major substrate for the production of biofuels and biochemicals, as well as food, textiles and other products. It is also the major carbon source for many fungi and enzymes of these fungi are essential for the depolymerization of plant polysaccharides in industrial processes. This is a highly complex process that involves a large number of extracellular enzymes as well as non-hydrolytic proteins, whose production in fungi is controlled by a set of transcriptional regulators. Aspergillus species form one of the best studied fungal genera in this field, and several species are used for the production of commercial enzyme cocktails. Results: It is often assumed that related fungi use similar enzymatic approaches to degrade plant polysaccharides. In this study we have compared the genomic content and the enzymes produced by eight Aspergilli for the degradation of plant biomass. All tested Aspergilli have a similar genomic potential to degrade plant biomass, with the exception of A. clavatus that has a strongly reduced pectinolytic ability. Despite this similar genomic potential their approaches to degrade plant biomass differ markedly in the overall activities as well as the specific enzymes they employ. While many of the genes have orthologs in (nearly) all tested species, only very few of the corresponding enzymes are produced by all species during growth on wheat bran or sugar beet pulp. In addition, significant differences were observed between the enzyme sets produced on these feedstocks, largely correlating with their polysaccharide composition. Conclusions: These data demonstrate that Aspergillus species and possibly also other related fungi employ significantly different approaches to degrade plant biomass. This makes sense from an ecological perspective where mixed populations of fungi together degrade plant biomass. The results of this study indicate that combining the approaches from different species could result in improved enzyme mixtures for industrial applications, in particular saccharification of plant biomass for biofuel production. Such an approach may result in a much better improvement

Transcriptome Profiling-Based Analysis of Carbohydrate-Active Enzymes in Aspergillus terreus Involved in Plant Biomass Degradation

Frontiers in Bioengineering and Biotechnology, 2020

Given the global abundance of plant biomass residues, potential exists in biorefinerybased applications with lignocellulolytic fungi. Frequently isolated from agricultural cellulosic materials, Aspergillus terreus is a fungus efficient in secretion of commercial enzymes such as cellulases, xylanases and phytases. In the context of biomass saccharification, lignocellulolytic enzyme secretion was analyzed in a strain of A. terreus following liquid culture with sugarcane bagasse (SB) (1% w/v) and soybean hulls (SH) (1% w/v) as sole carbon source, in comparison to glucose (G) (1% w/v). Analysis of the fungal secretome revealed a maximum of 1.017 UI.mL −1 xylanases after growth in minimal medium with SB, and 1.019 UI.mL −1 after incubation with SH as carbon source. The fungal transcriptome was characterized on SB and SH, with gene expression examined in comparison to equivalent growth on G as carbon source. Over 8000 genes were identified, including numerous encoding enzymes and transcription factors involved in the degradation of the plant cell wall, with significant expression modulation according to carbon source. Eighty-nine carbohydrate-active enzyme (CAZyme)-encoding genes were identified following growth on SB, of which 77 were differentially expressed. These comprised 78% glycoside hydrolases, 8% carbohydrate esterases, 2.5% polysaccharide lyases, and 11.5% auxiliary activities. Analysis of the glycoside hydrolase family revealed significant up-regulation for genes encoding 25 different GH family proteins, with predominance for families GH3, 5, 7, 10, and 43. For SH, from a total of 91 CAZyme-encoding genes, 83 were also significantly up-regulated in comparison to G. These comprised 80% glycoside hydrolases, 7% carbohydrate esterases, 5% polysaccharide lyases, 7% auxiliary activities (AA), and 1% glycosyltransferases. Similarly, within the glycoside hydrolases, significant up-regulation was observed for genes encoding 26 different GH family proteins, with predominance again for families GH3, 5, 10, 31, and 43. A. terreus is a promising species for production

Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis

BMC Genomics, 2012

Background: Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemi)celluloserich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide insights into the fungal secreted enzymatic pools involved in lignocellulose degradation. Results: In this study, we performed a wide analysis of 20 filamentous fungi for which genomic data are available to investigate their biomass-hydrolysis potential. A comparison of fungal genomes and secretomes using enzyme activity profiling revealed discrepancies in carbohydrate active enzymes (CAZymes) sets dedicated to plant cell wall. Investigation of the contribution made by each secretome to the saccharification of wheat straw demonstrated that most of them individually supplemented the industrial Trichoderma reesei CL847 enzymatic cocktail. Unexpectedly, the most striking effect was obtained with the phytopathogen Ustilago maydis that improved the release of total sugars by 57% and of glucose by 22%. Proteomic analyses of the best-performing secretomes indicated a specific enzymatic mechanism of U. maydis that is likely to involve oxido-reductases and hemicellulases. Conclusion: This study provides insight into the lignocellulose-degradation mechanisms by filamentous fungi and allows for the identification of a number of enzymes that are potentially useful to further improve the industrial lignocellulose bioconversion process.

mycoCLAP, the database for characterized lignocellulose-active proteins of fungal origin: resource and text mining curation support

Database : the journal of biological databases and curation, 2015

Enzymes active on components of lignocellulosic biomass are used for industrial applications ranging from food processing to biofuels production. These include a diverse array of glycoside hydrolases, carbohydrate esterases, polysaccharide lyases and oxidoreductases. Fungi are prolific producers of these enzymes, spurring fungal genome sequencing efforts to identify and catalogue the genes that encode them. To facilitate the functional annotation of these genes, biochemical data on over 800 fungal lignocellulose-degrading enzymes have been collected from the literature and organized into the searchable database, mycoCLAP (http://mycoclap.fungalgenomics.ca). First implemented in 2011, and updated as described here, mycoCLAP is capable of ranking search results according to closest biochemically characterized homologues: this improves the quality of the annotation, and significantly decreases the time required to annotate novel sequences. The database is freely available to the scient...

Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatusZ5 in the presence of different carbon sources

Biotechnology for Biofuels, 2013

Background Aspergillus fumigatus Z5 has a strong ability to decompose lignocellulose biomass, and its extracellular protein secretion has been reported in earlier studies employing traditional techniques. However, a comprehensive analysis of its secretion in the presence of different carbon sources is still lacking. The goal of this work was to identify, quantify and compare the secretome of A. fumigatus Z5 in the presence of different carbon sources to understand in more details the mechanisms of lignocellulose decomposition by Aspergillus fumigatus Z5. Results Cellulolytic A. fumigatus Z5 was grown in the presence of glucose (Gl), Avicel (Av) and rice straw (RS), and the activities of several lignocellulosic enzymes were determined with chromatometry method. The maximum activities of endoglucanase, exoglucanase, β-glucosidase, laminarinase, lichenase, xylanase and pectin lyase were 12.52, 0.59, 2.30, 2.37, 1.68, 15.02 and 11.40 U·ml-1, respectively. A total of 152, 125 and 61 diff...

Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw

Biotechnology for Biofuels, 2014

Background: New lignocellulolytic enzymes are needed that maintain optimal activity under the harsh conditions present during industrial enzymatic deconstruction of biomass, including high temperatures, the absence of free water, and the presence of inhibitors from the biomass. Enriching lignocellulolytic microbial communities under these conditions provides a source of microorganisms that may yield robust lignocellulolytic enzymes tolerant to the extreme conditions needed to improve the throughput and efficiency of biomass enzymatic deconstruction. Identification of promising enzymes from these systems is challenging due to complex substrate-enzyme interactions and requirements to assay for activity. In this study, metatranscriptomes from compost-derived microbial communities enriched on rice straw under thermophilic and mesophilic conditions were sequenced and analyzed to identify lignocellulolytic enzymes overexpressed under thermophilic conditions. To determine differential gene expression across mesophilic and thermophilic treatments, a method was developed which pooled gene expression by functional category, as indicated by Pfam annotations, since microbial communities performing similar tasks are likely to have overlapping functions even if they share no specific genes.

Penicillium echinulatum secretome analysis reveals the fungi potential for degradation of lignocellulosic biomass

Biotechnology for Biofuels, 2016

Background: The enzymatic degradation of lignocellulosic materials by fungal enzyme systems has been extensively studied due to its effectiveness in the liberation of fermentable sugars for bioethanol production. Recently, variants of the fungus Penicillium echinulatum have been described as a great producer of cellulases and considered a promising strain for the bioethanol industry. Results: Penicillium echinulatum, wild-type 2HH and its mutant strain S1M29, were grown on four different carbon sources: cellulose, sugar cane bagasse pretreated by steam explosion (SCB), glucose, and glycerol for 120 h. Samples collected at 24, 96, and 120 h were used for enzymatic measurement, and the 96-h one was also used for secretome analysis by 1D-PAGE LC-MS/MS. A total of 165 proteins were identified, and more than one-third of these proteins belong to CAZy families. Glycosyl hydrolases (GH) are the most abundant group, being represented in larger quantities by GH3, 5, 17, 43, and 72. Cellobiohydrolases, endoglucanases, β-glycosidases, xylanases, β-xylosidases, and mannanases were found, and in minor quantities, pectinases, ligninases, and amylases were also found. Swollenin and esterases were also identified. Conclusions: Our study revealed differences in the two strains of P. echinulatum in several aspects in which the mutation improved the production of enzymes related to lignocellulosic biomass deconstruction. Considering the spectral counting analysis, the mutant strain S1M29 was more efficient in the production of enzymes involved in cellulose and hemicellulose degradation, despite having a nearly identical CAZy enzymatic repertoire. Moreover, S1M29 secretes more quantities of protein on SCB than on cellulose, relevant information when considering the production of cellulases using raw materials at low cost. Glucose, and especially glycerol, were used mainly for the production of amylases and ligninases.