The Brownian motion and the canonical stochastic flow on a symmetric space (original) (raw)

On geometric properties of stochastic flows related to the Lyapunov spectrum

Probability Theory and Related Fields, 2000

We study the geometric properties of two stochastic flows on spheres in Euclidean space. The underlying one-point motion in both cases is Brownian. Both flows arise from the action of a Lie group valued Brownian motion on a quotient. For both flows the curvature of a curve moving under the flow is shown to be a diffusion, null recurrent in one case and transient in the other.

On Linear Stochastic Flows

2021

We study the existence of the stochastic flow associated to a linear stochastic evolution equation dX = AXdt+ ∑ k BkXdWk, on a Hilbert space. Our first result covers the case where A is the generator of a C0semigroup, and (Bk) is a sequence of bounded linear operators such that ∑ k ‖Bk‖ < +∞. We also provide sufficient conditions for the existence of stochastic flows in the Schatten classes beyond the space of Hilbert-Schmidt operators. Some new results and examples concerning the so-called commutative case are presented as well.

Brownian motion and the heat semigroup on the path space of a compact Lie group

Pacific Journal of Mathematics, 1993

Let G be a compact connected Lie group with identity element e , and let P e G denote the space of continuous maps y: [0, 1]-> G such that y(0) = e. When equipped with the natural group structure and sup metric, P e G becomes an interesting example of an infinite dimensional nonlinear topological group. The purpose of this paper is to consider certain aspects of analysis on P e G. Stimulated by a theorem of M. Malliavin and P. Malliavin, we prove the existence of a natural Brownian motion on P e G which depends only on a choice of bi-invariant metric for G. Our main results, however, concern the heat semigroup associated to the Brownian motion on P e G. We identify the action of the generator of this semigroup when applied to certain highly regular functions, with a result similar to that obtained earlier by L. Gross in the (linear) abstract Wiener space context.

Lyapunov exponents for a stochastic analogue of the geodesic flow

Transactions of the American Mathematical Society, 1986

New invariants for a Riemannian manifold are defined as Lyapunov exponents of a stochastic analogue of the geodesic flow. A lower bound is given reminiscent of corresponding results for the geodesic flow, and an upper bound is given for surfaces of positive curvature. For surfaces of constant negative curvature a direct method via the Doob rt-transform is used to determine the full Lyapunov structure relating the stable manifolds to the horocycles. 1. Introduction. In [3, Theorem 2.1] Carverhill defines the Lyapunov spectrum and filtration for the flow of a smooth stochastic dynamical system (SDS) on a smooth compact Riemannian manifold (see Theorem 1 below). This is a generalisation of the work of Ruelle [25] (see also [21, 24]) for a deterministic system. See [10] (also [6]) for a detailed discussion of stochastic systems and their flows, or [1] for an introductory article. Associated to a smooth Riemannian manifold M is an SDS on the orthonormal frame boundle OM, called the Canonical SDS for M, and which is described in Elworthy [10, Chapter 7, Example lA(iii), p. 112] (see also references on p. 157 of [10], and Sunada [27]). It seems that the Canonical SDS is the simplest stochastic system which can be 'canonically' defined given the Riemannian structure, i.e. without an arbitrary choice of additional structure on M. Our aim in this paper is to study the Lyapunov spectrum and filtration for the Canonical SDS. Since our system is canonical in the sense above, it follows that the spectrum and filtration are determined by the Riemannian structure on M. In Theorem 1 below we state Theorem 2.1 of [3] as it applies to the Canonical SDS. We will denote the Canonical SDS by (X,B), and its flow by &M-Thus, R is a Brownian motion on R" (n = dimM), and X is a bundle morphism O M x Rn-y TOM, defined such that for any frame u E OxM (i.e. a linear isometry Rn-> TXM) and any e € Rn, X(u)e is the horizontal lift to TOM of u(e) E TXM, with respect to the Riemannian connection on OM (see [10, Appendix B]). Eells and Elworthy (see [10, Theorem 12B, p. 159]) showed that the solutions to (X, B) project to heat flow on M, i.e. the transition probabilities pt(x,dy) on M given by Pt(x, B) = P{oj: 7r(£t(u;)u) E B} are the fundamental solutions to the heat equation on M. (Here, R is any Borel set in M, it is the bundle projection OM-> M, and u is any frame at x-the choice does not affect pt(x, B).

Ergodicity of homogeneous Brownian flows

Stochastic Processes and their Applications, 2003

Let M be a ÿnite-dimensional smooth-oriented paracompact manifold and k ; 0 6 k 6 d, be a family of complete smooth vector ÿelds on M so that the Brownian ow associated with D = k 1 2 k k + 0 exists globally. We prove that any volume form on M is irreducible for the Brownian ows if and only if there exists only constant functions ∈ L ∞ (M;) satisfying the following equation: = • (k ; t) ∀t ∈ R; 0 6 k 6 d; where ((; t) ∀t ∈ R) is the one-parameter group of di eomorphism on M associated with the complete vector ÿeld. In such a case, an invariant ÿnite volume form is ergodic for the ow.

The infinite Brownian loop on a symmetric space

Revista Matemática Iberoamericana, 2002

The infinite Brownian loop {B 0 t , t ≥ 0} on a Riemannian manifold M is the limit in distribution of the Brownian bridge of length T around a fixed origin 0, when T → +∞. It has no spectral gap. When M has nonnegative Ricci curvature, B 0 is the Brownian motion itself. When M = G/K is a noncompact symmetric space, B 0 is the relativized Φ 0-process of the Brownian motion, where Φ 0 denotes the basic spherical function of Harish-Chandra, i.e. the K-invariant ground state of the Laplacian. In this case, we consider the polar decomposition B 0 t = (K t , X t), where K t ∈ K/M and X t ∈ā + , the positive Weyl chamber. Then, as t → +∞, K t converges and d(0, X t)/t → 0 almost surely. Moreover the processes {X tT / √ T , t ≥ 0} converge in distribution, as T → +∞, to the intrinsic Brownian motion of the Weyl chamber. This implies in particular that d(0, X tT)/ √ T converges to a Bessel process of dimension D = rank M + 2j, where j denotes the number of positive indivisible roots. An ingredient of the proof is a new estimate on Φ 0 .

An isometric embedding of the g(t)-Brownian motion with application in stability and homotopy group

Stochastics and Dynamics, 2019

In this work, we construct a [Formula: see text]-Brownian motion via an isometric embedding, whose approach permit to define the Laplace operator associated with parametrized metric [Formula: see text], for every [Formula: see text]. We present an Itô formula for stochastic flow acting on time-dependent tensor fields, in particular to the metric [Formula: see text] and consequently to the norm of a stochastic process in [Formula: see text]. We use this approach to study stability by [Formula: see text]th moment exponent of [Formula: see text]-Brownian motion and its applications on homotopy groups.

On the stochastic Lie algebra

arXiv: Rings and Algebras, 2018

We study the structure of the Lie algebra mathfraks(n,mathbbR)\mathfrak{s}(n,\mathbb R)mathfraks(n,mathbbR) corresponding to the so-called stochastic Lie group mathcalS(n,mathbbR)\mathcal{S} (n,\mathbb R)mathcalS(n,mathbbR). We obtain the Levi decomposition of the Lie algebra, classify Levi factor and classify the representation of the factor in mathbbRn\mathbb{R}^nmathbbRn. We discuss isomorphism of mathcalS(n,mathbbR)\mathcal{S}(n,\mathbb R)mathcalS(n,mathbbR) with the group of invertible affine maps itAff(n−1,mathbbR){\it Aff}(n-1,\mathbb R)itAff(n1,mathbbR). We prove that mathfraks(n,mathbbR)\mathfrak s(n, \mathbb R)mathfraks(n,mathbbR) is generated by two generic elements.

Brownian bridge on Riemannian symmetric spaces

Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 2001

We consider the Brownian bridge of length T on a symmetric space of the noncompact type. We prove that this process, properly rescaled, converges when T → +∞ to a process whose generalized radial part is the bridge of the Euclidean Brownian motion in the Weyl chamber killed at the boundary.  2001 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS Le pont brownien sur les espaces riemanniens symétriques Résumé. On considère le pont brownien de longueur T sur un espace symétrique de type non compact. On montre que ce processus, convenablement renormalisé, converge lorsque T → +∞ vers un processus dont la partie radiale généralisée est le pont du mouvement brownien dans la chambre de Weyl tué à la frontière.  2001 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS Version française abrégée Considérons un espace riemannien symétrique de type non compact M. Par définition M = G/K où G est un groupe semi-simple connexe de centre fini et K est un sous-groupe compact maximal. Soit g = k + p la décomposition de Cartan de l'algèbre de Lie g de G. On choisit un sous espace abélien maximal a de p et on le munit de la structure euclidienne donnée par la forme de Killing. Soit a + une chambre de Weyl de a et Σ + 0 l'ensemble des racines indivisibles et positives associées. Rappelons la décomposition polaire généralisée de M. On choisit o = K comme origine dans M. Soit A = exp a et soit M le centralisateur de A dans K. Pour x ∈ M, soitk(x) ∈ K/M et C(x) ∈ a + tels que k(x) e C(x) • o = x, où k(x) ∈ K est un représentant dek(x). Nous utilisons aussi la décomposition d'Iwasawa G = KN A. Chaque g ∈ G s'écrit g = K(g)N (g) e H(g) , où K(g) ∈ K, N (g) ∈ N et H(g) ∈ a. Le mouvement brownien B sur M est le processus de Markov de générateur ∆/2. Son semi-groupe admet des densités p t (x, y) strictement positives et symétriques par rapport à la mesure riemannienne m. Le pont de a ∈ M à b ∈ M de longueur T est le processus de Markov B {a,b,T } t , 0 t T non homogène, Note présentée par Marc YOR. S0764-4442(01)02145-0/FLA  2001 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés