Efficient Hierarchical Robot Motion Planning Under Uncertainty and Hybrid Dynamics (original) (raw)
Related papers
Learning Hybrid Object Kinematics for Efficient Hierarchical Planning Under Uncertainty
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020
Sudden changes in the dynamics of robotic tasks, such as contact with an object or the latching of a door, are often viewed as inconvenient discontinuities that make manipulation difficult. However, when these transitions are wellunderstood, they can be leveraged to reduce uncertainty or aid manipulation-for example, wiggling a screw to determine if it is fully inserted or not. Current model-free reinforcement learning approaches require large amounts of data to learn to leverage such dynamics, scale poorly as problem complexity grows, and do not transfer well to significantly different problems. By contrast, hierarchical POMDP planning-based methods scale well via plan decomposition, work well on novel problems, and directly consider uncertainty, but often rely on precise hand-specified models and task decompositions. To combine the advantages of these opposing paradigms, we propose a new method, MICAH, which given unsegmented data of an object's motion under applied actions, (1) detects changepoints in the object motion model using action-conditional inference, (2) estimates the individual local motion models with their parameters, and (3) converts them into a hybrid automaton that is compatible with hierarchical POMDP planning. We show that model learning under MICAH is more accurate and robust to noise than prior approaches. Further, we combine MICAH with a hierarchical POMDP planner to demonstrate that the learned models are rich enough to be used for performing manipulation tasks under uncertainty that require the objects to be used in novel ways not encountered during training.
Motion planning with dynamics by a synergistic combination of layers of planning
2010
Abstract To efficiently solve challenges related to motion-planning problems with dynamics, this paper proposes treating motion planning not just as a search problem in a continuous space but as a search problem in a hybrid space consisting of discrete and continuous components. A multilayered framework is presented which combines discrete search and sampling-based motion planning. This framework is called synergistic combination of layers of planning (SyCLoP) hereafter.
Motion planning with hybrid dynamics and temporal goals
2010
Abstract In this paper, we consider the problem of motion planning for mobile robots with nonlinear hybrid dynamics, and high-level temporal goals. We use a multi-layered synergistic framework that has been proposed recently for solving planning problems involving hybrid systems and high-level temporal goals. In that framework, a high-level planner employs a user-defined discrete abstraction of the hybrid system as well as exploration information to suggest high-level plans.
The Stochastic Motion Roadmap: A Sampling Framework for Planning with Markov Motion Uncertainty
Robotics: Science and Systems III, 2007
We present a new motion planning framework that explicitly considers uncertainty in robot motion to maximize the probability of avoiding collisions and successfully reaching a goal. In many motion planning applications ranging from maneuvering vehicles over unfamiliar terrain to steering flexible medical needles through human tissue, the response of a robot to commanded actions cannot be precisely predicted. We propose to build a roadmap by sampling collision-free states in the configuration space and then locally sampling motions at each state to estimate state transition probabilities for each possible action. Given a query specifying initial and goal configurations, we use the roadmap to formulate a Markov Decision Process (MDP), which we solve using Infinite Horizon Dynamic Programming in polynomial time to compute stochastically optimal plans. The Stochastic Motion Roadmap (SMR) thus combines a sampling-based roadmap representation of the configuration space, as in PRM's, with the well-established theory of MDP's. Generating both states and transition probabilities by sampling is far more flexible than previous Markov motion planning approaches based on problem-specific or grid-based discretizations. We demonstrate the SMR framework by applying it to nonholonomic steerable needles, a new class of medical needles that follow curved paths through soft tissue, and confirm that SMR's generate motion plans with significantly higher probabilities of success compared to traditional shortest-path plans.
Fast and Feasible Deliberative Motion Planner for Dynamic Environments
2009
We present an approach to the problem of differentially constrained mobile robot motion planning in arbitrary time-varying cost fields. We construct a special search space which is ideally suited to the requirements of dynamic environments including a) feasible motion plans that satisfy differential constraints, b) efficient plan repair at high update rates, and c) deliberative goal-directed behavior on scales well beyond the effective range of perception sensors. The search space contains edges which adapt to the state sampling resolution yet aquire states exactly in order to permit the use of the dynamic programming principle without introducing infeasibility. It is a symmetric lattice based on a repeating unit of controls which permits off-line computation of the planner heuristic, motion simulation, and the swept volumes associated with each motion. For added planning efficiency, the search space features fine resolution near the vehicle and reduced resolution far away. Furthermore, its topology is updated in real-time as the vehicle moves in such a way that the underlying motion planner processes changing topology as an equivalent change in the dynamic environment. The planner was originally developed to cope with the reduced computation available on the Mars rovers. Experimental results with research prototype rovers demonstrate that the planner allows us to exploit the entire envelope of vehicle maneuverability in rough terrain, while featuring real-time performance.
A hybrid approach for complete motion planning
IEEE International Conference on Intelligent Robots and Systems, 2007
We present an efficient algorithm for complete motion planning that combines approximate cell decomposition (ACD) with probabilistic roadmaps (PRM). Our approach uses ACD to subdivide the configuration space into cells and computes localized roadmaps by generating samples within these cells. We augment the connectivity graph for adjacent cells in ACD with pseudo-free edges that are computed based on localized roadmaps. These roadmaps are used to capture the connectivity of free space and guide the adaptive subdivision algorithm. At the same time, we use cell decomposition to check for path non-existence and generate samples in narrow passages. Overall, our hybrid algorithm combines the efficiency of PRM methods with the completeness of ACD-based algorithms. We have implemented our algorithm on 3-DOF and 4-DOF robots. We demonstrate its performance on planning scenarios with narrow passages or no collision-free paths. In practice, we observe up to 10 times improvement in performance over prior complete motion planning algorithms.
AMPLE: an anytime planning and execution framework for dynamic and uncertain problems in robotics
Autonomous Robots
Acting in robotics is driven by reactive and deliberative reasonings which take place in the competition between execution and planning processes. Properly balancing reactivity and deliberation is still an open question for harmonious execution of deliberative plans in complex robotic applications. We propose a flexible algorithmic framework to allow continuous real-time planning of complex tasks in parallel of their executions. Our framework, named AMPLE, is oriented towards robotic modular architectures in the sense that it turns planning algorithms into services that must be generic, reactive, and valuable. Services are optimized actions that are delivered at precise time points following requests from other modules that include states and dates at which actions are needed. To this end, our framework is divided in two concurrent processes: a planning thread which receives planning requests and delegates action selection to embedded planning softwares in compliance with the queue of internal requests, and an execution thread which orchestrates these planning requests as well as action execution and state monitoring. We show how the behavior of the execution thread can be parametrized to achieve various strategies which can differ, for instance, depending on the distribution of internal planning requests over possible future execution states in anticipation of the uncertain evolution of the system, or over different underlying planners to take several levels into account. We demonstrate the flexibility and the relevance of our framework on various robotic benchmarks and real experiments that involve complex planning problems of different natures which could not be properly tackled by existing dedicated planning approaches which rely on the standard plan-then-execute loop.
Hierarchical DDPG for Manipulator Motion Planning in Dynamic Environments
AI
In this paper, a hierarchical reinforcement learning (HRL) architecture, namely a “Hierarchical Deep Deterministic Policy Gradient (HDDPG)” has been proposed and studied. A HDDPG utilizes manager and worker formation similar to other HRL structures. However, unlike others, the HDDPG enables sharing an identical environment and state among workers and managers, while a unique reward system is required for each Deep Deterministic Policy Gradient (DDPG) agent. Therefore, the HDDPG allows easy structural expansion with probabilistic action selection of a worker by the manager. Due to its innate structural advantage, the HDDPG has a merit in building a general AI to deal with a complex time-horizon tasks with various conflicting sub-goals. The experimental results demonstrated its usefulness with a manipulator motion planning problem in a dynamic environment, where path planning and collision avoidance conflict each other. The proposed HDDPG is compared with an HAM and a single DDPG for ...
Interactive search for action and motion planning with dynamics
Journal of Experimental & Theoretical Artificial Intelligence, 2016
This paper proposes an interactive search approach, termed INTERACT, which couples sampling-based motion planning with action planning in order to effectively solve the combined task and motion planning problem. INTERACT is geared towards scenarios involving a mobile robot operating in a fully known environment consisting of static and movable objects. INTERACT makes it possible to specify a task in the planning domain definition language (PDDL) and automatically computes a collision-free and dynamically feasible trajectory that enables the robot to accomplish the task. The coupling of sampling-based motion planning with action planning is made possible by expanding a tree of feasible motions and partitioning it into equivalence classes based on the task predicates. Action plans provide guidance as to which a equivalence class should be further expanded. Information gathered during the motion tree expansion is used to adjust the action costs in order to effectively guide the expansion towards the goal. This interactive process of selecting an equivalence class, expanding the motion tree to implement its action plan and updating the action costs and plans to reflect the progress made is repeated until a solution is found. Experimental validation is provided in simulation using a robotic vehicle to accomplish sophisticated pick-and-place tasks. Comparisons to previous work show significant improvements.
Iterative temporal motion planning for hybrid systems in partially unknown environments
Proceedings of the 16th international conference on Hybrid systems: computation and control - HSCC '13, 2013
This paper considers the problem of motion planning for a hybrid robotic system with complex and nonlinear dynamics in a partially unknown environment given a temporal logic specification. We employ a multi-layered synergistic framework that can deal with general robot dynamics and combine it with an iterative planning strategy. Our work allows us to deal with the unknown environmental restrictions only when they are discovered and without the need to repeat the computation that is related to the temporal logic specification. In addition, we define a metric for satisfaction of a specification. We use this metric to plan a trajectory that satisfies the specification as closely as possible in cases in which the discovered constraint in the environment renders the specification unsatisfiable. We demonstrate the efficacy of our framework on a simulation of a hybrid second-order car-like robot moving in an office environment with unknown obstacles. The results show that our framework is successful in generating a trajectory whose satisfaction measure of the specification is optimal. They also show that, when new obstacles are discovered, the reinitialization of our framework is computationally inexpensive.