Increased gamma-range activity in human sensorimotor cortex during performance of visuomotor tasks (original) (raw)

Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band

Brain, 1998

It has been shown in animals that neuronal activity in the 'gamma band' (>30 Hz) is associated with cortical activation and may play a role in multi-regional and multi-modal integration of cortical processing. Studies of gamma activity in human scalp EEG have typically focused on event-related synchronization (ERS) in the 40 Hz band. To assess further the gamma band ERS further, as an index of cortical activation and as a tool for human functional brain mapping, we recorded subdural electrocorticographic (ECoG) signals in five clinical subjects while they performed visual-motor decision tasks designed to activate the representations of different body parts in sensorimotor cortex. ECoG spectral analysis utilized a mixed-effects analysis of variance model in which within-trial temporal dependencies were accounted for. Taking an exploratory approach, we studied gamma ERS in 10-Hz-wide bands (overlapping by 5 Hz) ranging from 30 to 100 Hz, and compared these findings with changes in the alpha (8-13 Hz) and beta (15-25 Hz) bands. Gamma ERS (observed in three out of subjects) occurred in two broad bands-'low gamma' included the 35-45 and 40-50 Hz bands, and 'high gamma' the 75-85, 80-90, 85-95 and 90-100 Hz bands. The temporal and spatial characteristics of low and high gamma ERS were distinct, suggesting relatively independent

Changes in power and coherence of brain activity in human sensorimotor cortex during performance of visuomotor tasks

Biosystems, 2001

Electrocorticograms (ECoG) were recorded using subdural grid electrodes in forearm sensorimotor cortex of six human subjects. The subjects performed three visuomotor tasks, tracking a moving visual target with a joystick-controlled cursor; threading pieces of tubing; and pinching the fingers sequentially against the thumb. Control conditions were resting and active wrist extension. ECoGs were recorded at 14 sites in hand-and arm-sensorimotor area, functionally identified with electrical stimulation. For each behavior we computed spectral power of ECoG in each site and coherence in all pair-wise sites. In three out of six subjects, g-oscillations were observed when the subjects started the tasks. All subjects showed widespread power decrease in the range of 11-20 Hz and power increase in the 31-60 Hz ranges during performance of the visuomotor tasks. The changes in g-range power were more vigorous during the tracking and threading tasks compared with the wrist extension. Coherence analysis also showed similar task-related changes in coherence estimates. In contrast to the power changes, coherence estimates increased not only in g-range but also at lower frequencies during the manipulative visuomotor tasks. Paired sites with significant increases in coherence estimates were located within and between sensory and motor areas. These results support the hypothesis that coherent cortical activity may play a role in sensorimotor integration or attention.

Cortical gamma-oscillations modulated by visuomotor tasks

Epilepsy & Behavior, 2010

We determined how visuomotor tasks modulated gamma-oscillations on electrocorticography in epileptic patients who underwent epilepsy surgery. Each visual-cue consisted of either a sentence or hand gesture instructing the subject to press or not to press the button. Regardless of the recorded hemisphere, viewing sentence and gesture cues elicited gamma-augmentation sequentially in the lateral-polar occipital and inferior occipital-temporal areas; subsequently, button-press movement elicited gamma-augmentation in the Rolandic area. The magnitudes of gamma-augmentation in the Rolandic and inferior occipital-temporal areas were larger when the hand contralateral to the recorded hemisphere was used for motor responses. A double dissociation was found in the left inferior occipital-temporal cortex in one subject; the lateral portion had greater gamma-augmentation elicited by a sentence-cue, whereas the medial portion had greater gamma-augmentation elicited by a gesturecue. The present study has increased our understanding of the physiology of the human visuomotor system.

Gamma-band oscillations in fronto-central areas during performance of a sensorimotor integration task: A qEEG coherence study

Neuroscience Letters, 2010

This study aimed to elucidate electrophysiological and cortical mechanisms involved in anticipatory actions when 23 healthy right-handed subjects had to catch a free falling object by qEEG gamma-band (30-100 Hz). It is involved in cognitive processes, memory, spatial/temporal and proprioceptive factors. Our hypothesis is that an increase in gamma coherence in frontal areas will be observed during moment preceding ball drop, due to their involvement in attention, planning, selection of movements, preparation and voluntary control of action and in central areas during moment after ball drop, due to their involvement in motor preparation, perception and execution of movement. However, through a paired t-test, we found an increase in gamma coherence for F3-F4 electrode pair during moment preceding ball drop and confirmed our hypothesis for C3-C4 electrode pair. We conclude that gamma plays an important role in reflecting binding of several brain areas in a complex motor task as observed in our results. Moreover, for selection of movements, preparation and voluntary control of action, motor preparation, perception and execution of movement, the integration of somatosensory and visual information is mandatory.

Gamma band oscillations in parietooccipital areas during performance of a sensorimotor integration task: a qEEG coherence study

Arquivos de Neuro-Psiquiatria, 2011

This study aimed to elucidate cortical mechanisms involved in anticipatory actions when 23 healthy right-handed subjects had to catch a free falling object through quantitative electroencephalogram (qEEG). For this reason, we used coherence that represents a measurement of linear covariation between two signals in the frequency domain. In addition, we investigated gamma-band (30-100 Hz) activity that is related to cognitive and somatosensory processes. We hypothesized that gamma coherence will be increase in both parietal and occipital areas during moment after ball drop, due to their involvement in manipulation of objects, visuospatial processing, visual perception, stimuli identification and attention processes. We confirmed our hypothesis, an increase in gamma coherence on P3-P4 (t= -2.15; p=0.033) and PZ-OZ (t= -2.16; p=0.034) electrode pairs was verified for a paired t-test. We conclude that to execute tasks involving anticipatory movements (feedforward mechanisms), like our own task, probably, there is no need of a strong participation of visual areas in the process of information organization to manipulate objects and to process visuospatial information regarding the contact hand-object.

Relationship between intracerebral gamma oscillations and slow potentials in the human sensorimotor cortex

European Journal of Neuroscience, 2006

Changes in sensorimotor rhythms (mu, beta and gamma) and movement‐related cortical potentials (MRCPs) are both generated principally by the contralateral sensorimotor areas during the execution of self‐paced movement. They appear to reflect movement control mechanisms, which remain partially unclear. With the aim of better understanding their sources and significance, we recorded MRCPs and sensorimotor rhythms during and after self‐paced movement using intracerebral electrodes in eight epileptic subjects investigated by stereoelectroencephalography. The results showed that: (i) there is a strong spatial relationship between the late components of movement − the so‐called motor potential (MP) and post‐movement complex (PMc) – and gamma event‐related synchronization (ERS) within the 40–60 Hz band, as the MP/PMc always occurred in contacts displaying gamma ERS (the primary sensorimotor areas), whereas mu and beta reactivities were more diffuse; and (ii) MPs and PMc are both generated b...

Electrocorticographic (ECoG) correlates of human arm movements

Experimental Brain Research, 2012

Invasive and non-invasive brain-computer interface (BCI) studies have long focused on the motor cortex for kinematic control of artificial devices. Most of these studies have used single-neuron recordings or electroencephalography (EEG). Electrocorticography (ECoG) is a relatively new recording modality in BCI research that has primarily been built on successes in EEG recordings. We built on prior experiments related to single-neuron recording and quantitatively compare the extent to which different brain regions reflect kinematic tuning parameters of hand speed, direction, and velocity in both a reaching and tracing task in humans. Hand and arm movement experiments using ECoG have shown positive results before, but the tasks were not designed to tease out which kinematics are encoded. In non-human primates, the relationships among these kinematics have been more carefully documented, and we sought to begin elucidating that relationship in humans using ECoG. The largest modulation in ECoG activity for direction, speed, and velocity representation was found in the primary motor cortex. We also found consistent cosine tuning across both tasks, to hand direction and velocity in the high gamma band (70-160 Hz). Thus, the results of this study clarify the neural substrates involved in encoding aspects of motor preparation and execution and confirm the important role of the motor cortex in BCI applications.

Self-paced movements induce high-frequency gamma oscillations in primary motor cortex

NeuroImage, 2008

There has been increasing interest in the functional role of highfrequency (N30 Hz) cortical oscillations accompanying various sensorimotor and cognitive tasks in humans. Similar "high gamma" activity has been observed in the motor cortex, although the role of this activity in motor control is unknown. Using whole-head MEG recordings combined with advanced source localization methods, we identified high-frequency (65 to 80 Hz) gamma oscillations in the primary motor cortex during self-paced movements of the upper and lower limbs. Brief bursts of gamma activity were localized to the contralateral precentral gyrus (MI) during self-paced index finger abductions, elbow flexions and foot dorsiflexions. In comparison to lower frequency (10-30 Hz) sensorimotor rhythms that are bilaterally suppressed prior to and during movement (Jurkiewicz et al., 2006), high gamma activity increased only during movement, reaching maximal increase 100 to 250 ms following EMG onset, and was lateralized to contralateral MI, similar to findings from intracranial EEG studies. Peak frequency of gamma activity was significantly lower during foot dorsiflexion (67.4 ± 5.2 Hz) than during finger abduction (75.3 ± 4.4 Hz) and elbow flexion (73.9 ± 3.7 Hz) although markedly similar for left and right movements of the same body part within subjects, suggesting activation of a common underlying network for gamma oscillations in the left and right motor cortex. These findings demonstrate that voluntary movements elicit high-frequency gamma oscillations in the primary motor cortex that are effector specific, and possibly reflect the activation of cortico-subcortical networks involved in the feedback control of discrete movements.