Anaerobic Digestion Alters Copper and Zinc Speciation (original) (raw)
Environmental Science & Technology, 2018
Zinc (Zn) is a potentially toxic trace element that is present in large amounts in organic wastes (OWs) spread on agricultural lands as fertilizer. Zn speciation in OW is a crucial parameter to understand its fate in soil after spreading and to assess the risk associated with agricultural recycling of OW. Here, we investigated changes in Zn speciation from raw OWs up to digestates and/or composts for a large series of organic wastes sampled in full-scale plants. Using extended X-ray absorption fine structure (EXAFS), we show that nano-sized Zn sulfide (nano-ZnS) is a major Zn species in raw liquid OWs and a minor species in raw solid OWs. Whatever the characteristics of the raw OW, anaerobic digestion always favors the formation of nano-ZnS (>70% of zinc in digestates). However, after 1 to 3 months of composting of OWs, nano-ZnS becomes a minor species (<10% of zinc). In composts, Zn is mostly present as amorphous Zn phosphate and Zn sorbed to ferrihydrite. These results highlight (i) the influence of OW treatment on Zn speciation and (ii) the chemical instability of nano-ZnS formed in OW in anaerobic conditions.
Occurrence, Fate, and Implications of Heavy Metals during Anaerobic Digestion: A Review
Energies
Over the years, anaerobic digestion (AD) has evolved as a competent technology to retrieve energy potential from various organic substrates, including wastewater. However, the energy metabolisms of anaerobic microorganisms, biochemical reactions, and biogas production are affected by various parameters, including heavy metals. It is important to understand the interaction of heavy metals with anaerobes and their potential influence on the process to enhance energy potential. This review methodically outlines the occurrence and role of heavy metals in the AD process. Additionally, the repercussions of the most common heavy metals (i.e., Cu, Zn, Cd, Fe, and Ni) on each stage of AD (i.e., hydrolysis, acidogenesis, and methanogenesis) have been discussed. We found that traces of heavy metals can endorse anaerobic digestion, but inhibition increases with increasing concentration. Methanogenic archaea are more susceptible to heavy metal inhibition than hydrolytic and acidogenic archaea. A...
A role for copper in protozoan grazing - two billion years selecting for bacterial copper resistance
Molecular microbiology, 2016
The Great Oxidation Event (GOE) resulted in integration of soft metals in a wide range of biochemical processes including, in our opinion, killing of bacteria by protozoa. Compared to pressure from anthropologic copper contamination, little is known on impacts of protozoan predation on maintenance of copper resistance determinants in bacteria. To evaluate the role of copper and other soft metals in predatory mechanisms of protozoa, we examined survival of bacteria mutated in different transition metal efflux or uptake systems in the social amoeba Dictyostelium discoideum. Our data demonstrated a strong correlation between the presence of copper/zinc efflux as well as iron/manganese uptake, and bacterial survival in amoebae. The growth of protozoa, in turn, was dependent on bacterial copper sensitivity. The phagocytosis of bacteria induced upregulation of Dictyostelium genes encoding the copper uptake transporter p80 and a triad of Cu(I)-translocating PIB -type ATPases. Accumulated C...
Charting the travels of copper in eukaryotes from yeast to mammals
Throughout evolution, all organisms have harnessed the redox properties of copper (Cu) and iron (Fe) as a cofactor or structural determinant of proteins that perform critical functions in biology. At its most sobering stance to Earth's biome, Cu biochemistry allows photosynthetic organisms to harness solar energy and con- vert it into the organic energy that sustains the existence of all nonphotosynthetic life forms. The conversion of organic energy, in the form of nutrients that include carbohydrates, amino acids and fatty acids, is subse- quently released during cellular respiration, itself a Cu-dependent process, and stored as ATP that is used to drive a myriad of critical biological processes such as enzyme-catalyzed biosynthetic processes, transport of cargo around cells and across membranes, and protein degradation. The life-supporting properties of Cu incur a significant challenge to cells that must not only exquisitely balance intracellular Cu concentrations, but also chaperone this redox-active metal from its point of cellular entry to its ultimate destination so as to avert the potential for inappropriate biochemical interactions or generation of damaging reactive oxidative species (ROS). In this review we chart the travels of Cu from the extracellular milieu of fungal and mammalian cells, its path within the cytosol as inferred by the proteins and ligands that escort and deliver Cu to intracel- lular organelles and protein targets, and its journey throughout the body of mammals. This article is part of a Special Issue entitled: Cell Biology of Metals.
Mining Genomes of Marine Cyanobacteria for Elements of Zinc Homeostasis
Frontiers in Microbiology, 2012
Zinc is a recognized essential element for the majority of organisms, and is indispensable for the correct function of hundreds of enzymes and thousands of regulatory proteins. In aquatic photoautotrophs including cyanobacteria, zinc is thought to be required for carbonic anhydrase and alkaline phosphatase, although there is evidence that at least some carbonic anhydrases can be cambialistic, i.e., are able to acquire in vivo and function with different metal cofactors such as Co 2+ and Cd 2+. Given the global importance of marine phytoplankton, zinc availability in the oceans is likely to have an impact on both carbon and phosphorus cycles. Zinc concentrations in seawater vary over several orders of magnitude, and in the open oceans adopt a nutrient-like profile. Most studies on zinc handling by cyanobacteria have focused on freshwater strains and zinc toxicity; much less information is available on marine strains and zinc limitation. Several systems for zinc homeostasis have been characterized in the freshwater species Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803, but little is known about zinc requirements or zinc handling by marine species. Comparative metallo-genomics has begun to explore not only the putative zinc proteome, but also specific protein families predicted to have an involvement in zinc homeostasis, including sensors for excess and limitation (SmtB and its homologs as well as Zur), uptake systems (ZnuABC), putative intracellular zinc chaperones (COG0523) and metallothioneins (BmtA), and efflux pumps (ZiaA and its homologs).
Geochimica et Cosmochimica Acta, 2008
This work is aimed at quantifying the main environmental factors controlling isotope fractionation of Cu during its adsorption from aqueous solutions onto common organic (bacteria, algae) and inorganic (oxy(hydr)oxide) surfaces. Adsorption of Cu on aerobic rhizospheric (Pseudomonas aureofaciens CNMN PsB-03) and phototrophic aquatic (Rhodobacter sp. f-7bl, Gloeocapsa sp. f-6gl) bacteria, uptake of Cu by marine (Skeletonema costatum) and freshwater (Navicula minima, Achnanthidium minutissimum and Melosira varians) diatoms, and Cu adsorption onto goethite (FeOOH) and gibbsite (AlOOH) were studied using a batch reaction as a function of pH, copper concentration in solution and time of exposure. Stable isotopes of copper in selected filtrates were measured using Neptune multicollector ICP-MS. Irreversible incorporation of Cu in cultured diatom cells at pH 7.5-8.0 did not produce any isotopic shift between the cell and solution (D 65/63 Cu(solid-solution)) within ±0.2&. Accordingly, no systematic variation was observed during Cu adsorption on anoxygenic phototrophic bacteria (Rhodobacter sp.), cyanobacteria (Gloeocapsa sp.) or soil aerobic exopolysaccharide (EPS)-producing bacteria (P. aureofaciens) in circumneutral pH (4-6.5) and various exposure times (3 min to 48 h): D 65 Cu(solid-solution) = 0.0 ± 0.4&. In contrast, when Cu was adsorbed at pH 1.8-3.5 on the cell surface of soil the bacterium P. aureofacienshaving abundant or poor EPS depending on medium composition, yielded a significant enrichment of the cell surface in the light isotope (D 65 Cu (solid-solution) = À1.2 ± 0.5&). Inorganic reactions of Cu adsorption at pH 4-6 produced the opposite isotopic offset: enrichment of the oxy(hydr)oxide surface in the heavy isotope with D 65 Cu(solid-solution) equals 1.0 ± 0.25& and 0.78 ± 0.2& for gibbsite and goethite, respectively. The last result corroborates the recent works of Mathur et al. [Mathur R., Ruiz J., Titley S., Liermann L., Buss H. and Brantley S. (2005) Cu isotopic fractionation in the supergene environment with and without bacteria. Geochim. Cosmochim. Acta 69, 5233-5246] and Balistrieri et al. [Balistrieri L. S., Borrok D. M., Wanty R. B. and Ridley W. I. (2008) Fractionation of Cu and Zn isotopes during adsorption onto amorhous Fe(III) oxyhydroxide: experimental mixing of acid rock drainage and ambient river water. Geochim. Cosmochim. Acta 72, 311-328] who reported heavy Cu isotope enrichment onto amorphous ferric oxyhydroxide and on metal hydroxide precipitates on the external membranes of Fe-oxidizing bacteria, respectively.
Copper and the biological evolution
Biosystems, 1983
Copper is contained in a number of enzymes and proteins. A remarkable feature is that except for the electroncarrying blue copper proteins (azurin and plastocyanin) and copper-containing cytochrome c oxidase found in some cyanobacteria and some aerobic bacteria, all copper enzymes and proteins are found only in eukaryotes. In the early and middle precambrian period when the stationary oxygen pressure in the atmosphere was quite low, copper existed as either metallic or cuprous sulfides which are very insoluble in aqueous media; thus copper might have been unavailable to organisms. The time when copper became Cu(II) upon rise of the atmospheric oxygen pressure and thus became available to organisms seems to be in the middle of Proteozoic era when first eukaryotic organisms seem to have appeared on earth. Thus copper may be considered to be an indicator element for the atmospheric evolution (switching from anoxygenic to oxygenic) and the evolution of higher organisms (eukaryotes).
Critical Reviews in Environmental Science and Technology, 2016
Optimal supply of trace elements (TE) is a prerequisite for microbial growth and activity in anaerobic digestion (AD) bioprocesses. However, the required concentrations and ratios of essential TE for AD biotechnologies strongly depend on prevailing operating conditions as well as feedstock composition. Furthermore, TE in AD bioreactors undergo complex physico-chemical reactions and may be present as free ions, complex bound or as precipitates depending on pH, or on the presence of sulfur compounds or organic macromolecules. To overcome TE deficiency various commercial mineral products are typically applied to AD processes. The addition of heavy metals poses the risk of overdosing operating systems, which may be toxic to microbial consortia and ultimately the environment. Adequate supplementation, therefore, requires not only appropriate knowledge about the composition, but also on the speciation and bioavailability of TE. However, very little is yet fully understood on this specific issue. Evaluations of TE typically only include the measurement of total TE concentrations but do not consider the chemical forms in which TE exist. Thus detailed information on bioavailability and potential toxicity cannot be provided. This review provides an overview of the state-of-the-art in approaches to determine bioavailable TE in anaerobic bioprocesses, including sequential fractionation and speciation techniques. Critical ACCEPTED MANUSCRIPT ACCEPTED MANUSCRIPT 4 aspects and considerations, including with respect to sampling and analytical procedures, as well as mathematical modelling, are examined. The approaches discussed in this review are based on our experiences and on previously published studies in the context of the "COST Action 1302: European Network on Ecological Roles of Trace Metals in Anaerobic Biotechnologies".