Developing prosthetic artificial muscle actuator using dielectric elastomers (original) (raw)

The loss of an upper limb can impair the ability to do even the simplest daily tasks. Robust prosthetic devices need to replicate the smooth movement, while maintaining the relatively high forces typical of the original limb. Dielectric elastomers (DEs) are potential candidates for actuating such prosthetic devices, however, DE materials are associated with material failure which limits their use as actuators. They also have been reported to generate low output force. This has limited DEs from being used for prosthetic devices that mainly require high output forces. This thesis proposes a conceptual design for a prosthetic arm, where the actuator is the DE material arranged in a suggested mechanism to generate high output force. A two-bar mechanism was assumed to represent the human arm. The flexion action of the elbow was achieved by a slider-crank mechanism connecting the two bars actuated by DEs membranes. The DE actuator mechanism comprised of the arrangement of 1000 parallel pl...