Design and Study of Novel Peptide Inhibitors against the SARS-Coronavirus Spike Protein (original) (raw)

Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides

Proceedings of The National Academy of Sciences, 2004

The coronavirus SARS-CoV is the primary cause of the life-threatening severe acute respiratory syndrome (SARS). With the aim of developing therapeutic agents, we have tested peptides derived from the membrane-proximal (HR2) and membrane-distal (HR1) heptad repeat region of the spike protein as inhibitors of SARS-CoV infection of Vero cells. It appeared that HR2 peptides, but not HR1 peptides, were inhibitory. Their efficacy was, however, significantly lower than that of corresponding HR2 peptides of the murine coronavirus mouse hepatitis virus (MHV) in inhibiting MHV infection. Biochemical and electron microscopical analyses showed that, when mixed, SARS-CoV HR1 and HR2 peptides assemble into a six-helix bundle consisting of HR1 as a central triple-stranded coiled coil in association with three HR2 -helices oriented in an antiparallel manner. The stability of this complex, as measured by its resistance to heat dissociation, appeared to be much lower than that of the corresponding MHV complex, which may explain the different inhibitory potencies of the HR2 peptides. Analogous to other class I viral fusion proteins, the six-helix complex supposedly represents a postfusion conformation that is formed after insertion of the fusion peptide, proposed here for coronaviruses to be located immediately upstream of HR1, into the target membrane. The resulting close apposition of fusion peptide and spike transmembrane domain facilitates membrane fusion. The inhibitory potency of the SARS-CoV HR2-peptides provides an attractive basis for the development of a therapeutic drug for SARS.

Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein

Virus Research, 2006

Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is the cause of an atypical pneumonia that affected Asia, North America and Europe in 2002-2003. The viral spike (S) glycoprotein is responsible for mediating receptor binding and membrane fusion. Recent studies have proposed that the carboxyl terminal portion (S2 subunit) of the S protein is a class I viral fusion protein. The Wimley and White interfacial hydrophobicity scale was used to identify regions within the CoV S2 subunit that may preferentially associate with lipid membranes with the premise that peptides analogous to these regions may function as inhibitors of viral infectivity. Five regions of high interfacial hydrophobicity spanning the length of the S2 subunit of SARS-CoV and murine hepatitis virus (MHV) were identified. Peptides analogous to regions of the N-terminus or the pre-transmembrane domain of the S2 subunit inhibited SARS-CoV plaque formation by 40-70% at concentrations of 15-30 microM. Interestingly, peptides analogous to the SARS-CoV or MHV loop region inhibited viral plaque formation by >80% at similar concentrations. The observed effects were dose-dependent (IC50 values of 2-4 microM) and not a result of peptide-mediated cell cytotoxicity. The antiviral activity of the CoV peptides tested provides an attractive basis for the development of new fusion peptide inhibitors corresponding to regions outside the fusion protein heptad repeat regions.

Antiviral Peptides as Promising Therapeutics against SARS-CoV-2

Journal Of Physical Chemistry B, 2020

Over 50 peptides, which were known to inhibit SARS-CoV-1, were computationally screened against the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. Based on the binding affinity and interaction, 15 peptides were selected, which showed higher affinity compared to the α-helix of the human ACE2 receptor. Molecular dynamics simulation demonstrated that two peptides, S2P25 and S2P26, were the most promising candidates, which could potentially block the entry of SARS-CoV-2. Tyr489 and Tyr505 residues present in the "finger-like" projections of the RBD were found to be critical for peptide interaction. Hydrogen bonding and hydrophobic interactions played important roles in prompting peptide−protein binding and interaction. Structure−activity relationship indicated that peptides containing aromatic (Tyr and Phe), nonpolar (Pro, Gly, Leu, and Ala), and polar (Asn, Gln, and Cys) residues were the most significant contributors. These findings can facilitate the rati...

Suppression of SARS-CoV entry by peptides corresponding to heptad regions on spike glycoprotein

2004

Heptad repeat regions (HR1 and HR2) are highly conserved sequences located in the glycoproteins of enveloped viruses. They form a six-helix bundle structure and are important in the process of virus fusion. Peptides derived from the HR regions of some viruses have been shown to inhibit the entry of these viruses. SARS-CoV was also predicted to have HR1 and HR2 regions in the S2 protein. Based on this prediction, we designed 25 peptides and screened them using a HIV-luc/SARS pseudotyped virus assay. Two peptides, HR1-1 and HR2-18, were identified as potential inhibitors, with EC 50 values of 0.14 and 1.19 lM, respectively. The inhibitory effects of these peptides were validated by the wild-type SARS-CoV assay. HR1-1 and HR2-18 can serve as functional probes for dissecting the fusion mechanism of SARS-CoV and also provide the potential of further identifying potent inhibitors for SARS-CoV entry.

Potential antiviral peptides targeting the SARS-CoV-2 spike protein

BMC Pharmacology and Toxicology

Background The coronavirus disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection became an international pandemic and created a public health crisis. The binding of the viral Spike glycoprotein to the human cell receptor angiotensin-converting enzyme 2 (ACE2) initiates viral infection. The development of efficient treatments to combat coronavirus disease is considered essential. Methods An in silico approach was employed to design amino acid peptide inhibitor against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. The designed inhibitor (SARS-CoV-2 PEP 49) consists of amino acids with the α1 helix and the β4 - β5 sheets of ACE2. The PEP-FOLD3 web tool was used to create the 3D structures of the peptide amino acids. Analyzing the interaction between ACE2 and the RBD of the Spike protein for three protein data bank entries (6M0J, 7C8D, and 7A95) indicated that the interacting amino acids were contained inside two regions of ACE...

Fusion core structure of the severe acute respiratory syndrome coronavirus (SARS‐CoV): In search of potent SARS‐CoV entry inhibitors

2008

Severe acute respiratory coronavirus (SARS-CoV) spike (S) glycoprotein fusion core consists of a six-helix bundle with the three C-terminal heptad repeat (HR2) helices packed against a central coiled-coil of the other three N-terminal heptad repeat (HR1) helices. Each of the three peripheral HR2 helices shows prominent contacts with the hydrophobic surface of the central HR1 coiled-coil. The concerted protein-protein interactions among the HR helices are responsible for the fusion event that leads to the release of the SARS-CoV nucleocapsid into the target host-cell. In this investigation, we applied recombinant protein and synthetic peptide-based biophysical assays to characterize the biological activities of the HR helices. In a parallel experiment, we employed a HIV-luc/SARS pseudotyped virus entry inhibition assay to screen for potent inhibitory activities on HR peptides derived from the SARS-CoV S protein HR regions and a series of other small-molecule drugs. Three HR peptides and five small-molecule drugs were identified as potential inhibitors. ADS-J1, which has been used to interfere with the fusogenesis of HIV-1 onto CD4 þ cells, demonstrated the highest HIV-luc/SARS pseudotyped virus-entry inhibition activity among the other small-molecule drugs. Molecular modeling analysis suggested that ADS-J1 may bind to the deep pocket of the hydrophobic groove on the surface of the central coiled-coil of SARS-CoV S HR protein and prevent the entrance of the SARS-CoV into the host cells.

Synthetic peptides outside the spike protein heptad repeat regions as potent inhibitors of SARS-associated coronavirus

Antiviral Therapy, 2005

A novel severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) has been identified as the aetiological agent of SARS. We previously isolated and characterized SARS-CoV and SARS-CoV-like viruses from human and animals, respectively, suggesting that SARS could be transmitted from wild/farmed animals to humans. Comparison of the viral genomes indicated that sequence variation between animal and human isolates existed mainly in the spike (S) gene. We hypothesized that these variations may underlie a change of binding specificity of the S protein to the host cells, permitting viral transmission from animals to humans. Here we report that four 20-mer synthetic peptides (S protein fragments), designed to span these sequence variation hotspots, exhibited significant antiviral activities in a cell line. SARS-CoV infectivity was reduced over 10 000-fold through pre-incubation with two of these peptides, while it was completely inhibited in the presence of three peptides. Molecular modelling of the SARS-CoV peplomer suggests that three of these antiviral peptides map to the interfaces between the three monomers of the trimeric peplomer rather than the heptad repeat region from which short peptides are known to inhibit viral entry. Our results revealed novel regions in the spike protein that can be targeted to inhibit viral infection. The peptides identified in this study could be further developed into antiviral drugs.

Identification of a Potential Peptide Inhibitor of SARS-CoV-2 Targeting its Entry into the Host Cells

Drugs in R&D

Background and objective Coronavirus disease (COVID-19) is an ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the incessant spread of the disease with substantial morbidity and mortality rates, there is an urgent demand for effective therapeutics and vaccines to control and diminish this pandemic. A critical step in the crosstalk between the virus and the host cell is the binding of SARS-CoV-2 spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor present on the surface of the host cells. Hence, inhibition of this interaction could be a promising strategy to combat the SARS-CoV-2 infection. Methods Docking and Molecular Dynamics (MD) simulation studies revealed that designed peptide maintains their secondary structure and provide a highly specific and stable binding (blocking) to SARS-CoV-2. Results We have designed a novel peptide that could inhibit SARS-CoV-2 spike protein interaction with ACE2, thereby blocking the cellular entry of the virus. Conclusion Our findings suggest that computationally developed inhibitory peptide may be developed as an anti-SARS-CoV-2 agent for the treatment of SARS-CoV-2 infection. We further plan to pursue the peptide in cell-based assays and eventually for clinical trials.

Designing of pan-coronavirus fusion inhibitors and vaccines with targetable elements in SARS-CoV-2 S2 subunit

Journal of Human Virology & Retrovirology, 2023

Figure 1 Demonstrating the structural features of targetable elements (fusion peptide, stem helix, and heptad repeats 1 and 2) in SARS-CoV-2 S2 subunit. a Schematic structure of SARS-CoV-2 spike protein. The conserved glycosylation sites within the SARS-CoV-2 S2 subunit are shown and marked as ψ. b Conformational transition of SARS-CoV-2 S2 subunit from pre-(PDB: 6XR8) to post-fusion (PDB: 7E9T) state. c The electrostatic surface representation of the FP binding area and the structural illustration of the FP in pre-fusion spike (PDB: 6XR8). The segment corresponding to FP is shown in sticks and colored in cyan. d The stem 3-helix bundle is shown in pre-S trimer (PDB: 6XR8). The detailed residues are shown in sticks and colored in green. e The electrostatic surface representation of the SH binding area and structural illustration of SH in post-fusion spike (PDB: 6XRA). The segment corresponding to SH is shown in sticks and colored in green. f-h Structure of the SARS-CoV-2 six-helix bundle (6-HB) in the post-fusion conformation (PDB: 6LXT). The symmetry-related structure of the 6-HB bundle is shown. Structures from a top view (up) and a side view (down) are presented in (f). The electrostatic surface of the HR2 binding site is shown in (g). The detailed hydrophobic and hydrogen-bond interactions between HR1 and HR2 are shown and labeled in (h). The distance cutoff is 3.1 Å for hydrogen-bond contact. 13