Sulfide and iron control on mercury speciation in anoxic estuarine sediment slurries (original) (raw)
Related papers
Water Research, 2015
Iron-reducing bacteria Sulfate-reducing bacteria Sediments Iron Sewage treatment plant a b s t r a c t Sewage treatment plants (STPs) are important point sources of mercury (Hg) to the environment. STPs are also significant sources of iron when hydrated ferric oxide (HFO) is used as a dephosphatation agent during water purification. In this study, we combined geochemical and microbiological characterization with Hg speciation and sediment amendments to evaluate the impact of STP's effluents on monomethylmercury (MMHg)
Estuarine, Coastal and Shelf Science, 2012
Mercury (Hg) transformation activities and sulfate (SO 4 2À ) reduction were studied in sediments of the Marano and Grado Lagoons in the Northern Adriatic Sea region as part of the "MIRACLE" project. The lagoons, which are sites of clam (Tapes philippinarum) farming, have been receiving excess Hg from the Isonzo River for centuries. Marano Lagoon is also contaminated from a chlor-alkali plant. Radiotracer methods were used to measure mercury methylation ( 230 Hg, 197 Hg), methylmercury (MeHg) demethylation ( 14 C-MeHg) and SO 4 2À reduction ( 35 S) in sediment cores collected in autumn, winter and summer.
BIOGEOCHEMICAL FACTORS AFFECTING MERCURY METHYLATION IN SEDIMENTS OF THE VENICE LAGOON, ITALY
Environmental Toxicology and Chemistry, 2007
Mercury methylation and sulfate reduction rates, total Hg, and monomethyl Hg in the sediments of the Venice Lagoon (Italy) were measured in June 2005 in order to identify the factors affecting the methylation of inorganic Hg. While the rates of Hg methylation and sulfate reduction were generally higher in the surface layers (0-2.5 cm), the correlation between Hg methylation and sulfate reduction rates was not significant when considering all depths and sites. This discrepancy is discussed considering two factors: the activity of sulfate-reducing bacteria and Hg solubility. The former factor is important in determining the Hg methylation rate in comparable geochemical conditions as evidenced by similar vertical profiles of Hg methylation and sulfate reduction rates in each sediment core. The latter factor was assessed by comparing the Hg methylation rate with the particle-water partition coefficient of Hg. The Hg methylation rates normalized to sulfate reduction rates showed a negative linear correlation with the logarithm of the particle-water partition coefficient of Hg, suggesting that the availability of dissolved Hg is a critical factor affecting Hg methylation. Solid FeS seems to play an important role in controlling the solubility of Hg in Venice Lagoon sediments, where sulfate and iron reductions are the dominant electron-accepting processes. Overall, the production of monomethyl Hg in the Venice Lagoon is controlled by a fine balance between microbial and geochemical processes with key factors being the microbial sulfate reduction rate and the availability of dissolved Hg.
Applied and Environmental Microbiology, 2000
Differences in methylmercury (CH 3 Hg) production normalized to the sulfate reduction rate (SRR) in various species of sulfate-reducing bacteria (SRB) were quantified in pure cultures and in marine sediment slurries in order to determine if SRB strains which differ phylogenetically methylate mercury (Hg) at similar rates. Cultures representing five genera of the SRB (Desulfovibrio desulfuricans, Desulfobulbus propionicus, Desulfococcus multivorans, Desulfobacter sp. strain BG-8, and Desulfobacterium sp. strain BG-33) were grown in a strictly anoxic, minimal medium that received a dose of inorganic Hg 120 h after inoculation. The mercury methylation rates (MMR) normalized per cell were up to 3 orders of magnitude higher in pure cultures of members of SRB groups capable of acetate utilization (e.g., the family Desulfobacteriaceae) than in pure cultures of members of groups that are not able to use acetate (e.g., the family Desulfovibrionaceae). Little or no Hg methylation was observed in cultures of Desulfobacterium or Desulfovibrio strains in the absence of sulfate, indicating that Hg methylation was coupled to respiration in these strains. Mercury methylation, sulfate reduction, and the identities of sulfate-reducing bacteria in marine sediment slurries were also studied. Sulfate-reducing consortia were identified by using group-specific oligonucleotide probes that targeted the 16S rRNA molecule. Acetate-amended slurries, which were dominated by members of the Desulfobacterium and Desulfobacter groups, exhibited a pronounced ability to methylate Hg when the MMR were normalized to the SRR, while lactate-amended and control slurries had normalized MMR that were not statistically different. Collectively, the results of pure-culture and amended-sediment experiments suggest that members of the family Desulfobacteriaceae have a greater potential to methylate Hg than members of the family Desulfovibrionaceae have when the MMR are normalized to the SRR. Hg methylation potential may be related to genetic composition and/or carbon metabolism in the SRB. Furthermore, we found that in marine sediments that are rich in organic matter and dissolved sulfide rapid CH 3 Hg accumulation is coupled to rapid sulfate reduction. The observations described above have broad implications for understanding the control of CH 3 Hg formation and for developing remediation strategies for Hg-contaminated sediments.
Ecological Questions, 2020
Methylmercury is a potent neurotoxin affecting shallow-water ecosystems. Mercury polluted sediment samples were collected at six different sites in the Orbetello Lagoon (central Italy) characterized by high levels of silt, iron, manganese hydroxides, and organic matter originated the latter originated from the decomposition of macroalgae. Porous water pointed out the presence of sulphates, methylmercury, and sulphides. Slurries arranged in anaerobic conditions from sediment aliquots from the six sites, with the addition of ionic mercury, highlighted the production of methylmercury. Sulphate reducing bacteria (SRB) were quantified in lagoon sediments; furthermore, sediments cultured under anaerobic conditions showed SRBs active in mercury methylation. Anaerobic cultures of SRB, amended with ionic mercury, produced methylmercury during the growth of bacterial cells. The percentage of aerobic mercury resistant bacteria was pointed out at each sampling site, evidencing the presence of bioavailable mercury. Several aerobic mercury resistant bacteria were isolated and their level of resistance to inorganic and organic forms of mercury was evaluated. These isolates may be potentially used for eventual bioremediation processes. Mercury methylation by SRB in the Orbetello Lagoon sediments was described for the first time, focusing the attention on the need for possible bioremediation processes by using autochthonous mercury resistant bacteria. Moreover, the influence of algal biomass on mercury methylation was highlighted for the first time in this lagoon ecosystem. The importance of removing algal biomass, as it represents a source of organic matter favouring the process of mercury methylation, was strongly pointed out in this study.
Environmental Science & Technology, 2012
The five distinct habitat types 1 for sampling included floodplain wetland (located at 2.6 and 13.8 km from Waynesboro, referred to hereafter as Relative River Distance-RRD2.6 and RRD13.8), bed sediment pool (RRD4.8 and RRD14.0), embedded pool (RRD7.4 and RRD11.9), island or mill race side channel pool (RRD8.4 and RRD15.9), and river pool edges with finegrained sediment deposit (RRD10.0 and RRD20.6) (See Figure S1 and Table S1). S1.2 Biogeochemical Analyses of Sediments and Porewater After transferring and tightly sealing sediments into Falcon tubes in an anaerobic chamber, porewater was extracted from the samples by centrifugation (SLA-1500 rotor in a Sorvall RC-5B plus) at 10,000 rpm for 30 min at 4 °C. Aliquots of porewater were filtered through 0.22 µm membranes, and analyzed for nitrate and sulfate concentrations using an ICS-1000 ion chromatography system (Dionex, CA) equipped with an AS-40 autosampler and an Ionpac AS9-HC analytical column (4 mm × 250 mm). The mobile phase used for ion chromatography analysis was a 9 mM Na 2 CO 3 solution. Porewater pH was measured by an Accumet 915 pH Meter (Fisher Sci.). For whole sediment samples, organic matter content was analyzed by the loss-on-ignition (LOI) method. 2 Total solids and acid volatile sulfide (AVS) in sediment were measured following the procedures described by EPA Method 160.3 3 and 821/R-91-100, 4 respectively.
Science of The Total Environment, 2012
Methylmercury (MeHg) is the most poisonous form of mercury (Hg) and it enters the human body primarily through consumption of Hg contaminated fish. Sulfate reducing bacteria (SRB) are major producers of MeHg in anoxic sediments. The dsrAB gene was isolated from freshwater fish pond sediments. Sequence analyses showed that the SRB in sediments was mainly composed of Desulfobulbus propionicus and Desulfovibrio vulgaris. The two species of SRB were cultured from freshwater sediments. The addition of inorganic Hg to these freshwater sediments caused an increase in MeHg concentrations at 30 days incubation. MeHg levels were sensitive to sulfate concentrations; a medium sulfate level (0.11 mg/g) produced higher levels than treatments lacking sulfate addition or when amended with 0.55 mg/g. Assessment of bacterial levels by PCR measurements of microbial DNA indicated that the MeHg levels were correlated with cell growth.
Environmental Science & Technology, 2001
A quantitative framework was developed which estimates mercury methylation rates (MMR) in sediment cores based on measured sulfate reduction rates (SRR) and the community composition sulfate-reducing bacterial consortia. MMR and SRR as well as group-specific 16S rRNA concentrations (as quantified by probe signal) associated with sulfate-reducing bacteria (SRB) were measured in triplicate cores of saltmarsh sediments. Utilizing previously documented conversion factors in conjunction with field observations of sulfate reduction, MMR were calculated, and the results were compared to experimentally derived measurements of MMR. Using our novel field data collected in saltmarsh sediment where sulfate reduction activity is high, calculated and independently measured MMR results were consistently within an order of magnitude and displayed similar trends with sediment depth. In an estuarine sediment where sulfate reduction activity was low, calculated and observed MMR diverged by greater than an order of magnitude, but again trends with depth were similar. We have expanded the small database generated to date on mercury methylation in sulfur-rich marine sediments. The quantitative framework we have developed further elucidates the coupling of mercury methylation to sulfate reduction by basing calculated rates of mercury methylation on the activity and community composition of sulfatereducing bacteria. The quantitative framework may also provide a promising alternative to the difficult and hazardous determination of MMR using radiolabeled mercury.
Mercury Speciation in Marine Sediments under Sulfate-Limited Conditions
Environmental Science & Technology, 2010
Sediment profiles of total mercury (Hg) and monomethylmercury (MMHg) were determined from a 30-m drill hole located north of Venice, Italy. While the sediment profile of total Hg concentration was fairly constant between 1 and 10 m, that of the MMHg concentration showed an unexpected peak at a depth of 6 m. Due to the limited sulfate content (<1 mM) at the depth of 6 m, we hypothesized that the methylation of inorganic Hg(II) at this depth is associated with the syntrophic processes occurring between methanogens and sulfidogens. To test this hypothesis, anoxic sediment slurries were prepared using buried Venice Lagoon sediments amended with HgCl 2 , and we monitored MMHg concentration in sediment slurries over time under two geochemical conditions: high sulfate (1-16 mM) and limited sulfate concentrations (<100 µM). After day 52 and onward from the addition of inorganic Hg(II), the MMHg concentrations were higher in sulfate-limited slurries compared to high sulfate slurries, along with methane production in both slurries. On the basis of these results, we argue that active methylation of inorganic Hg(II) occurs under sulfate-limited conditions possibly by syntrophic processes occurring between methanogens and sulfidogens. The environmental significance of syntrophic Hg(II) methylation should be further studied.