FLIM and PLIM in biomedical research – An innovative way to combine autofluorescence and oxygen measurements (original) (raw)

High resolution imaging of intracellular oxygen concentration by phosphorescence lifetime

Scientific Reports

Optical methods using phosphorescence quenching by oxygen are suitable for sequential monitoring and non-invasive measurements for oxygen concentration (OC) imaging within cells. Phosphorescence intensity measurement is widely used with phosphorescent dyes. These dyes are ubiquitously but heterogeneously distributed inside the whole cell. The distribution of phosphorescent dye is a major disadvantage in phosphorescence intensity measurement. We established OC imaging system for a single cell using phosphorescence lifetime and a laser scanning confocal microscope. This system had improved spatial resolution and reduced the measurement time with the high repetition rate of the laser. By the combination of ubiquitously distributed phosphorescent dye with this lifetime imaging microscope, we can visualize the OC inside the whole cell and spheroid. This system uses reversible phosphorescence quenching by oxygen, so it can measure successive OC changes from normoxia to anoxia. Lower regio...

Sensing intracellular oxygen using near-infrared phosphorescent probes and live-cell fluorescence imaging

AJP: Regulatory, Integrative and Comparative Physiology, 2006

Papkovsky DB. Sensing intracellular oxygen using near-infrared phosphorescent probes and live-cell fluorescence imaging. The development and application of a methodology for measurement of oxygen within single mammalian cells are presented, which employ novel macromolecular near infrared (NIR) oxygen probes based on new metalloporphyrin dyes. The probes, which display optimal spectral characteristics and sensitivity to oxygen, excellent photostability, and low cytotoxicity and phototoxicity, are loaded into cells by simple transfection procedures and subsequently analyzed by high-resolution fluorescence microscopy. The methodology is demonstrated by sensing intracellular oxygen in different mammalian cell lines, including A549, Jurkat, and HeLa, and monitoring rapid and transient changes in response to mitochondrial uncoupling by valinomycin and inhibition by antimycin A. Furthermore, the effect of ryanodine receptormediated Ca 2ϩ influx on cellular oxygen uptake is shown by substantial changes in the level of intracellular oxygen. The results demonstrate the ability of this technique to measure small, rapid, and transient changes in intracellular oxygen in response to different biological effectors. Moreover, this technique has wide ranging applicability in cell biology and is particularly useful in the study of low oxygen environments (cellular hypoxia), mitochondrial and cellular (dys)function, and for therapeutic areas, such as cardiovascular and neurological research, metabolic diseases, and cancer. metalloporphyrin; mitochondrial function; uncoupling

Assessment of Cellular Redox State Using NAD(P)H Fluorescence Intensity and Lifetime

BIO-PROTOCOL

NADH and NADPH are redox cofactors, primarily involved in catabolic and anabolic metabolic processes respectively. In addition, NADPH plays an important role in cellular antioxidant defence. In live cells and tissues, the intensity of their spectrally-identical autofluorescence, termed NAD(P)H, can be used to probe the mitochondrial redox state, while their distinct enzymebinding characteristics can be used to separate their relative contributions to the total NAD(P)H intensity using fluorescence lifetime imaging microscopy (FLIM). These protocols allow differences in metabolism to be detected between cell types and altered physiological and pathological states.

Correlative NAD(P)H-FLIM and oxygen sensing-PLIM for metabolic mapping

Journal of Biophotonics, 2016

Cellular responses to oxygen tension have been studied extensively. Oxygen tension can be determined by considering the phosphorescence lifetime of a phosphorescence sensor. The simultaneous usage of FLIM of coenzymes as NAD(P)H and FAD+ and PLIM of oxygen sensors could provide information about correlation of metabolic pathways and oxygen tension. We investigated correlative NAD(P)H-FLIM and oxygen sensing-PLIM for simultaneously analyzing cell metabolism and oxygen tension. Cell metabolism and pO2 were observed under different hypoxic conditions in squamous carcinoma cell cultures and in complex ex vivo systems. Increased hypoxia induced an increase of the phosphorescence lifetime of Ru(BPY)3 and in most cases a decrease in the lifetime of NAD(P)H which is in agreement to the expected decrease of the protein-bound NAD(P)H during hypoxia. Oxygen was modulated directly in the mitochondrial membrane. Blocking of complex III and accumulation of oxygen could be observed by both the decrease of the phosphorescence lifetime of Ru(BPY)3 and a reduction of the lifetime of NAD(P)H which was a clear indication of acute changes in the redox state of the cells. For the first time simultaneous FLIM/PLIM has been shown to be able to visualize intracellular oxygen tension together with a change from oxidative to glycolytic phenotype.

Correlation of intracellular oxygen and cell metabolism by simultaneous PLIM of phosphorescent TLD1433 and FLIM of NAD(P)H

Journal of Biophotonics, 2018

During PDT disruption of cell respiration and metabolic changes could be one of the first events. Photophysical characteristics of the photosensitizer (PS) and its specific redox potential define consumption of molecular oxygen followed by generation of reactive oxygen species (ROS). The potential photosensitizer TLD1433 is based on transition metal Ru(II) and possess an oxygen dependent luminescence. This enables study of oxygen consumption by PS-PLIM (phosphorescence lifetime imaging) and simultaneously changes of the cellular metabolic state by NAD(P)H-FLIM (fluorescence lifetime imaging). Within this study, localization and cellular function of TLD1433 is investigated in bladder carcinoma cells using time-resolved and confocal laser scanning microscopy. Simultaneous FLIM/PLIM of NAD(P)H and TLD1433 during PDT correlated oxygen consumption, redox state and cellular energy metabolism. Our investigations aimed to provide a personalized protocol in theranostic PDT procedures and demonstrate the potential use of TLD1433 PDT also under hypoxic conditions, which are otherwise difficult to treat.

Novel fluorescent oxygen indicator for intracellular oxygen measurements

Journal of Biomedical Optics, 2002

Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, and modification of the contents of the publication are prohibited. Access to this work was provided by the University of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform.

Fluorescence lifetime imaging of endogenous biomarker of oxidative stress

Scientific Reports, 2015

Presence of reactive oxygen species (ROS) in excess of normal physiological level results in oxidative stress. This can lead to a range of pathological conditions including inflammation, diabetes mellitus, cancer, cardiovascular and neurodegenerative disease. Biomarkers of oxidative stress play an important role in understanding the pathogenesis and treatment of these diseases. A number of fluorescent biomarkers exist. However, a non-invasive and label-free identification technique would be advantageous for in vivo measurements. In this work we establish a spectroscopic method to identify oxidative stress in cells and tissues by fluorescence lifetime imaging (FLIM). We identified an autofluorescent, endogenous species with a characteristic fluorescent lifetime distribution as a probe for oxidative stress. To corroborate our hypothesis that these species are products of lipid oxidation by ROS, we correlate the spectroscopic signals arising from lipid droplets by combining FLIM with THG and CARS microscopy which are established techniques for selective lipid body imaging. Further, we performed spontaneous Raman spectral analysis at single points of the sample which provided molecular vibration information characteristics of lipid droplets.

A pilot study of the dynamics of tissue oxygenation in vivo using time-resolved phosphorescence imaging

Journal of Innovative Optical Health Sciences, 2021

Oxygenation of tissues plays an important role in the development and progression of tumor to treatment effects. Method of metalloporphyrines phosphorescence quenching by oxygen is one of the ways to measure dynamics of the oxygen concentration in the tissues by phosphorescence lifetime imaging of meso-tetra(sulfopheny1)tetrabenzoporphyrin Pd (II) (TBP) using the time-correlated single photon counting (TCSPC) method. It has been shown that phosphorescence lifetime of the sensor in S37 tumor in vivo varied in the range of 130 to 290 [Formula: see text]s after both topical and intravenous administration of TBP. It indicates that oxygen level in tumors was lower compared to normal tissues where TBP phosphorescence has not been detected. Phosphorescence lifetimes of TBP increased in the solid tumor and in the muscle after photodynamic therapy of solid tumor that demonstrates oxygen consumption during treatment and possibly stopping the blood flow and hence the oxygen supply to the tissues.

Oxygen Mapping of Melanoma Spheroids using Small Molecule Platinum Probe and Phosphorescence Lifetime Imaging Microscopy

Scientific Reports

Solid tumours display varied oxygen levels and this characteristic can be exploited to develop new diagnostic tools to determine and exploit these variations. Oxygen is an efficient quencher of emission of many phosphorescent compounds, thus oxygen concentration could in many cases be derived directly from relative emission intensity and lifetime. In this study, we extend our previous work on phosphorescent, low molecular weight platinum(II) complex as an oxygen sensing probe to study the variation in oxygen concentration in a viable multicellular 3D human tumour model. The data shows one of the first examples of non-invasive, real-time oxygen mapping across a melanoma tumour spheroid using one-photon phosphorescence lifetime imaging microscopy (PLIM) and a small molecule oxygen sensitive probe. These measurements were quantitative and enabled real time oxygen mapping with high spatial resolution. This combination presents as a valuable tool for optical detection of both physiological and pathological oxygen levels in a live tissue mass and we suggest has the potential for broader clinical application. The use of metal complexes as dyes and probes for emission-based cellular imaging has developed into a vibrant area of research over the past decade 1-3. This emerging class of probes offers photo-physical properties that differ to a range of commercially available organic probes, and is enabling a new range of technologies to be explored. Notably, recent advances in optics and electronics, combined with the long emission lifetimes typical for transition metal complexes (from hundreds of nanoseconds to microseconds), has resulted in the emergence of multiphoton microsecond lifetime mapping techniques, such as Phosphorescence Lifetime Imaging Microscopy (PLIM) 4, 5 and Time-Resolved Emission Imaging Microscopy (TREM) 4. Luminescent transition metal complexes typically emit from a triplet excited state. Although transitions between states of a different spin are formally forbidden, intersystem crossing to the triplet state and subsequent relaxation to the ground state via phosphorescence are facilitated in transition metal complexes by the high spin orbit coupling constant associated with the heavy metal atom. The forbidden nature of the phosphorescence transition, results in a slow rate of emission; hence phosphorescence lifetimes are typically the order of hundreds of nanoseconds to microseconds. It is well documented that molecular oxygen quenches such triplet emitters and that the rate of quenching is dependent on oxygen concentration 5-10. One application of phosphorescent emitters in biological imaging is in oxygen detection, where more sensitive, non-invasive methods are in demand. The combination of phosphorescence quenching and high-resolution lifetime imaging is a powerful approach for non-invasive, real-time hypoxia detection and oxygen quantification. Oxygen quantification in biological systems is primarily focused on the use of large platinum and palladium porphyrins. These compounds display long emission lifetimes (typically 40-60 µs), which typically decreases