Earthworms Effect on Microbial Population and Soil Fertility as Well as Their Interaction with Agriculture Practices (original) (raw)
Abstract
Earthworms mix soil layers and bind the soil with organic matter. This combination allows organic matter to disperse through the soil and also allows plants to access the nutrients they retains and enhance the soil’s fertility. Earthworms improve the soil’s biological, chemical, and physical characteristics and serve as soil conditioners. They do so by dissolution, aeration, soil organic breakdown, the release of plant nutrients, and their role in the fastening of nitrogen due to plant growth hormone secretion. However, a variety of soil and environmental factors influence the soil population. Furthermore, it remains uncertain how soil worms modify soil microbial communities’ composition and how they impact the soil’s microbial process. By feeding on microorganisms or selecting and stimulating specific microbial groups, earthworms reduce microbes’ activity and abundance. Earthworms directly impact the plant’s growth and recycling of nutrients but are mainly mediated by indirect micr...
Key takeaways
AI
- Earthworms significantly enhance soil fertility through mixing layers, nutrient cycling, and microbial community modulation.
- The review aims to explore earthworms' interactions with soil microbial populations and agricultural practices.
- Earthworms can release 60-70 kg of nitrogen per hectare annually, improving nutrient availability in soil.
- Soil factors such as moisture, pH, and organic matter significantly influence earthworm population dynamics.
- Earthworm activities can positively impact crop production, with 43% of studies reporting biomass increases exceeding 20%.

Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (74)
- Brown, G.G.; Barois, I.; Lavelle, P. Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur. J. Soil Biol. 2000, 36, 177-198. [CrossRef]
- Kuzyakov, Y.; Blagodatskaya, E. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol. Biochem. 2015, 83, 184-199. [CrossRef]
- Lavelle, P.; Spain, A.; Blouin, M.; Brown, G.; Decaëns, T.; Grimaldi, M.; Jiménez, J.J.; McKey, D.; Mathieu, J.; Velasquez, E.; et al. Ecosystem engineers in a self-organized soil: A review of concepts and future research questions. Soil Sci. 2016, 181, 91-109.
- Curry, J.P.; Schmidt, O. The feeding ecology of earthworms-A review. Pedobiologia 2007, 50, 463-477. [CrossRef]
- Hoang, D.T.T.; Pausch, J.; Razavi, B.S.; Kuzyakova, I.; Banfield, C.C.; Kuzyakov, Y. Hotspots of microbial activity induced by earthworm burrows, old root channels, and their combination in subsoil. Biol. Fertil. Soils 2016, 52, 1105-1119. [CrossRef]
- Lipiec, J.; Fr ąc, M.; Brzezi ńska, M.; Turski, M.; Oszust, K. Linking Microbial Enzymatic Activities and Functional Diversity of Soil around Earthworm Burrows and Casts. Front. Microbiol. 2016, 7, 1361. [CrossRef]
- Drake, H.L.; Horn, M.A. As the Worm Turns: The Earthworm Gut as a Transient Habitat for Soil Microbial Biomes. Annu. Rev. Microbiol. 2007, 61, 169-189. [CrossRef]
- Hong, S.W.; Lee, J.S.; Chung, K.S. Effect of enzyme producing microorganisms on the biomass of epigeic earthworms (eisenia fetida) in vermicompost. Bioresour. Technol. 2011, 102, 6344-6347. [CrossRef]
- Khomyakov, N.V.; Kharin, S.A.; Nechitailo, T.Y.; Golyshin, P.N.; Kurakov, A.V.; Byzov, B.A.; Zvyagintsev, D.G. Reaction of microorganisms to the digestive fluid of earthworms. Microbiology 2007, 76, 45-54. [CrossRef]
- Nechitaylo, T.Y.; Yakimov, M.; Godinho, M.; Timmis, K.N.; Belogolova, E.; Byzov, B.A.; Kurakov, A.V.; Jones, D.L.; Golyshin, P. Effect of the Earthworms Lumbricus terrestris and Aporrectodea caliginosa on Bacterial Diversity in Soil. Microb. Ecol. 2009, 59, 574-587. [CrossRef]
- Chapuis-Lardy, L.; Brauman, A.; Bernard, L.; Pablo, A.L.; Toucet, J.; Mano, M.J.; Weber, L.; Brunet, D.; Razafimbelo, T.; Chotte, J.L.; et al. Effect of the endogeic earthworm Pontoscolex corethrurus on the microbial structure and activity related to CO2 and N2O fluxes from a tropical soil (Madagascar). Appl. Soil Ecol. 2010, 45, 201-208. [CrossRef]
- Fujii, K.; Ikeda, K.; Yoshida, S. Isolation and characterization of aerobic microorganisms with cellulolytic activity in the gut of endogeic earthworms. Int. Microbiol. 2012, 15, 121-130. [CrossRef] [PubMed]
- Shan, J.; Liu, J.; Wang, Y.; Yan, X.; Guo, H.; Li, X.; Ji, R. Digestion and residue stabilization of bacterial and fungal cells, protein, peptidoglycan, and chitin by the geophagous earthworm Metaphire guillelmi. Soil Biol. Biochem. 2013, 64, 9-17. [CrossRef]
- Monroy, F.; Aira, M.; Domínguez, J. Changes in density of nematodes, protozoa and total coliforms after transit through the gut of four epigeic earthworms (Oligochaeta). Appl. Soil Ecol. 2008, 39, 127-132. [CrossRef]
- Aira, M.; Monroy, F.; Domínguez, J. Changes in bacterial numbers and microbial activity of pig slurry during gut transit of epigeic and anecic earthworms. J. Hazard. Mater. 2009, 162, 1404-1407. [CrossRef]
- Domínguez, J.; Aira, M.; Gómez-Brandón, M. Vermicomposting: Earthworms enhance the work of microbes. In Microbes at Work: From Wastes to Resources; Insam, H., Franke-Whittle, I., Goberna, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 93-114.
- Gómez-Brandón, M.; Aira, M.; Lores, M.; Domínguez, J. Epigeic Earthworms Exert a Bottleneck Effect on Microbial Communities through Gut Associated Processes. PLoS ONE 2011, 6, e24786. [CrossRef]
- Brown, G.G.; Doube, B. Functional interactions between earthworms, microorganisms, organic matter and plants. In Earthworm Ecology, 2nd ed.; CRC Press: Boca Raton, FL, USA; London, UK, 2004; pp. 213-240.
- Singleton, D.R.; Hendrix, P.F.; Coleman, D.C.; Whitman, W.B. Identification of uncultured bacteria tightly associated with the intestine of the earthworm Lumbricus rubellus (Lumbricidae; Oligochaeta). Soil Biol. Biochem. 2003, 35, 1547-1555. [CrossRef]
- Johnsen, A.; Wick, L.Y.; Harms, H. Principles of microbial PAH-degradation in soil. Environ. Pollut. 2005, 133, 71-84. [CrossRef]
- Byzov, B.A.; Khomyakov, N.V.; Kharin, S.A.; Kurakov, A.V. Fate of soil bacteria and fungi in the gut of earthworms. Eur. J. Soil Biol. 2007, 43, S149-S156. [CrossRef]
- Dwipendra, T.; Olaf, S.; Dillon, F.; Damian, E.; Fiona, M.D. Gut wall bacteria of earthworms: A natural selection process. ISME J. 2010, 4, 357-366.
- Rudi, K.; Ødegård, K.; Løkken, T.T.; Wilson, R. A Feeding Induced Switch from a Variable to a Homogenous State of the Earthworm Gut Microbiota within a Host Population. PLoS ONE 2009, 4, e7528. [CrossRef] [PubMed]
- Zhang, B.-G.; Li, G.-T.; Shen, T.-S.; Wang, J.-K.; Sun, Z. Changes in microbial biomass C, N, and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia fetida. Soil Biol. Biochem. 2000, 32, 2055-2062. [CrossRef]
- Scheu, S.; Schlitt, N.; Tiunov, A.; Newington, J.E.; Jones, H.T. Effects of the presence and community composition of earthworms on microbial community functioning. Oecologia 2002, 133, 254-260. [CrossRef] [PubMed]
- Aira, M.; Monroy, F.; Domínguez, J. Earthworms strongly modify microbial biomass and activity triggering enzymatic activities during vermicomposting independently of the application rates of pig slurry. Sci. Total Environ. 2007, 385, 252-261. [CrossRef]
- Aira, M.; Monroy, F.; Dominguez, J. Eisenia fetida (Oligochaeta: Lumbricidae) modifies the structure and physiological capabilities of microbial communities improving carbon mineralization during vermicomposting of pig manure. Microb. Ecol. 2007, 54, 662-671. [CrossRef]
- Bonkowski, M.; Griffiths, B.S.; Ritz, K. Food preferences of earthworms for soil fungi. Pedobiologia 2000, 44, 666-676. [CrossRef]
- Blackwell, P. Management of water repellency in Australia. J. Hydrol. 2003, 231-232, 384-395. [CrossRef]
- De Menezes, A.B.; Prendergast-Miller, M.; Macdonald, L.; Toscas, P.; Baker, G.; Farrell, M.; Wark, T.; E Richardson, A.; Thrall, P.H. Earthworm-induced shifts in microbial diversity in soils with rare versus established invasive earthworm populations. FEMS Microbiol. Ecol. 2018, 94, 5. [CrossRef]
- Vivas, A.; Moreno, B.; Garcia-Rodriguez, S.; Benitez, E. Assessing the impact of composting and vermicomposting on bacterial community size and structure, and microbial functional diversity of an olive-mill waste. Bioresour. Technol. 2009, 100, 1319-1326.
- Gopal, M.; Bhute, S.; Gupta, A.; Prabhu, S.R.; Thomas, G.V.; Whitman, W.; Jangid, K. Changes in structure and function of bacterial communities during coconut leaf vermicomposting. Antonie van Leeuwenhoek 2017, 110, 1339-1355. [CrossRef]
- Hoeffner, K.; Monard, C.; Santonja, M.; Cluzeau, D. Feeding behavior of epiAnecic earthworm species and their impacts on soil microbial communities. Soil Biol. Biochem. 2018, 125, 1-9. [CrossRef]
- Furlong, M.A.; Singleton, D.R.; Coleman, D.C.; Whitman, W.B. Molecular and Culture-Based Analyses of Prokaryotic Communi- ties from an Agricultural Soil and the Burrows and Casts of the Earthworm Lumbricus rubellus. Appl. Environ. Microbiol. 2002, 68, 1265-1279. [CrossRef] [PubMed]
- Koubová, A.; Chro ňáková, A.; Pižl, V.; Sanchez-Monedero, M.; Elhottová, D. The effects of earthworms Eisenia spp. on microbial community are habitat dependent. Eur. J. Soil Biol. 2015, 68, 42-55. [CrossRef]
- Egert, M.; Marhan, S.; Wagner, B.; Scheu, S.; Friedrich, M.W. Molecular profiling of 16S rRNA genes reveals diet-related differences of microbial communities in soil, gut, and casts of Lumbricus terrestris L. (Oligochaeta: Lumbricidae). FEMS Microbiol. Ecol. 2004, 48, 187-197. [CrossRef] [PubMed]
- Sampedro, L.; Whalen, J.K. Changes in the fatty acid profiles through the digestive tract of the earthworm Lumbricus terrestris L. Appl. Soil Ecol. 2007, 35, 226-236. [CrossRef]
- Le-Bayon, R.C.; Moreau, S.; Gascuel-Odoux, C.; Binet, F. Annual variations in earthworm surface-casting activity and soil transport by water runoff under a temperate maize agroecosystem. Geoderma 2002, 106, 121-135. [CrossRef]
- Jégou, D.; Schrader, S.; Diestel, H.; Cluzeau, D. Morphological, physical and biochemical characteristics of burrow walls formed by earthworms. Appl. Soil Ecol. 2001, 17, 165-174. [CrossRef]
- Ernst, G.; Felten, D.; Vohland, M.; Emmerling, C. Impact of ecologically different earthworm species on soil water characteristics. Eur. J. Soil Biol. 2009, 45, 207-213. [CrossRef]
- Blouin, M.; Lavelle, P.; Laffray, D. Drought stress in rice (Oryza sativa L.) is enhanced in the presence of the compacting earthworm Millsonia anomala. Environ. Exp. Bot 2007, 60, 352-359. [CrossRef]
- Ritsema, C.; Dekker, L. Preferential flow in water repellent sandy soils: Principles and modeling implications. J. Hydrol. 2000, 231-232, 308-319. [CrossRef]
- Jarvis, N.; Etana, A.; Stagnitti, F. Water repellency, near-saturated infiltration and preferential solute transport in a macroporous clay soil. Geoderma 2008, 143, 223-230. [CrossRef]
- Sander, T.; Gerke, H.H.; Rogasik, H. Assessment of Chinese paddy-soil structure using X-ray computed tomography. Geoderma 2008, 145, 303-314. [CrossRef]
- Capowiez, Y.; Cadoux, S.; Bouchant, P.; Ruy, S.; Roger-Estrade, J.; Richard, G.; Boizard, H. The effect of tillage type and cropping system on earthworm communities, macroporosity and water infiltration. Soil Tillage Res. 2009, 105, 209-216. [CrossRef]
- Shuster, W.D.; Mc-Donald, L.P.; Mc-Cartney, D.A.; Parmelee, R.W.; Studer, N.S.; Stinner, B.R. Nitrogen source and earthworm abundance affected runoff volume and nutrient loss in a tilled-corn agroecosystem. Biol. Fertil. Soils 2002, 35, 320-327. [CrossRef]
- Jouquet, P.; Podwojewski, P.; Bottinelli, N.; Mathieu, J.; Ricoy, M.; Orange, D.; Tran, T.D.; Valentin, C. Above-ground earthworm casts affect water runoff and soil erosion in Northern Vietnam. CATENA 2008, 74, 13-21. [CrossRef]
- Hallaire, V.; Curmi, P.; Duboisset, A.; Lavelle, P.; Pashanasi, B. Soil structure changes induced by the tropical earthworm Pontoscolex corethrurus and organic inputs in a Peruvian ultisol. Eur. J. Soil Biol. 2000, 36, 35-44. [CrossRef]
- Valckx, J.; Pennings, A.; Leroy, T.; Berckmans, D.; Govers, G.; Hermy, M.; Muys, B. Automated observation and analysis of earthworm surface behaviour under experimental habitat quality and availability conditions. Pedobiologia 2010, 53, 259-263.
- Ranch, T. Earthworm Benefits. 2006. Available online: https://mypeoplepc.com/members//arbra/bbb/id19.html (accessed on 16 March 2022).
- Lavelle, P.; Barois, I.; Blanchart, E.; Brown, G.; Decaëns, T.; Fragoso, C.; Jimenez, J.J.; Kajondo, K.K.; Moreno, A.; Pashanasi, B.; et al. Earthworms as a resource in tropical agroecosystems. In Microbial Interactions in Agriculture and Forestry; SubbaRao, N.S., Dommergues, Y.R., Eds.; Science Publishers, Inc.: Hauppauge, NY, USA, 2001; pp. 163-181.
- Lavelle, P.; Spain, A.V. Soil Ecology; Kluwer Scientific Publications: Amsterdam, The Netherlands, 2001.
- Edwards, C.A. Earthworm Ecology; CRC Press: Boca Raton, FL, USA, 2004.
- Laossi, K.-R.; Decaëns, T.; Jouquet, P.; Barot, S. Can We Predict How Earthworm Effects on Plant Growth Vary with Soil Properties? Appl. Environ. Soil Sci. 2010, 2010, 1-6. [CrossRef]
- Atiyeh, R.M.; Domínguez, J.; Subler, S.; Edwards, C.A. Changes in biochemical properties of cow manure during processing by earthworms (Eisenia andrei, Bouché) and the effects on seedling growth. Pedobiologia 2000, 44, 709-724. [CrossRef]
- Chan, K.Y.; Baker, G.H.; Conyers, M.K.; Scott, B.; Munro, K. Complementary ability of three European earthworms (Lumbricidae) to bury lime and increase pasture production in acidic soils of southeastern Australia. Appl. Soil Ecol. 2004, 26, 257-271. [CrossRef]
- Decaëns, T.; Mariani, L.; Betancourt, N.; Jiménez, J. Seed dispersion by surface casting activities of earthworms in Colombian grasslands. Acta Oecologica 2003, 24, 175-185. [CrossRef]
- Hale, C.M.; Frelich, L.E.; Reich, P.B.; Pastor, J. Exotic earthworm effects on hardwood forest floor, nutrient availability and native plants: A mesocosm study. Oecologia 2007, 155, 509-518. [CrossRef] [PubMed]
- Laossi, K.R.; Noguera, D.C.; Bartolomé-Lasa, A.; Mathieu, J.; Blouin, M.; Barot, S. Effects of endogeic and Anecic earthworms on the Earthworm services for cropping systems 565 competition between four annual plants and their relative reproduction potential. Soil Biol. Biochem. 2009, 41, 1668-1673. [CrossRef]
- Eisenhauer, N.; Schuy, M.; Butenschoen, O.; Scheu, S. Direct and indirect effects of endogeic earthworms on plant seeds. Pedobiologia 2009, 52, 151-162. [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Okorokova-Façanha, A.L.; Façanha, A.R. Humic Acids Isolated from Earthworm Compost Enhance Root Elongation, Lateral Root Emergence, and Plasma Membrane H+-ATPase Activity in Maize Roots. Plant Physiol. 2002, 130, 1951-1957. [CrossRef] [PubMed]
- Puga-Freitas, R.; Barot, S.; Taconnat, L.; Renou, J.P.; Blouin, M. Signal molecules mediate the impact of the earthworm Aporrectodea caliginosa on growth, development and defence of the plant Arabidopsis thaliana. PLoS ONE 2012, 7, e49504. [CrossRef]
- Puga-Freitas, R.; Abbad, S.; Gigon, A.; Garnier-Zarli, E.; Blouin, M. Control of cultivable IAA-producing bacteria by the plant Arabidopsis thaliana and the earthworm Aporrectodea caliginosa. Appl. Environ. Soil Sci. 2012, 307415. [CrossRef]
- Feller, C.; Brown, G.G.; Blanchart, E.; Deleporte, P.; Chernyanskii, S.S. Charles Darwin, earthworms and the natural sciences: Various lessons from past to future. Agric. Ecosyst. Environ. 2003, 1, 29-49. [CrossRef]
- Pelletier, D.M.; Fahey, T.J.; Groffman, P.; Bohlen, P.J.; Fisk, M. Effects of Exotic Earthworms on Soil Phosphorus Cycling in Two Broadleaf Temperate Forests. Ecosystems 2004, 7, 28-44. [CrossRef]
- Bohlen, P.J.; Pelletier, D.M.; Groffman, P.; Fahey, T.J.; Fisk, M. Influence of Earthworm Invasion on Redistribution and Retention of Soil Carbon and Nitrogen in Northern Temperate Forests. Ecosystems 2004, 7, 13-27. [CrossRef]
- Hendrix, P.F.; Callaham, M.A.; Drake, J.M.; Huang, C.Y.; James, S.W.; Snyder, B.A. Pandora's box contained bait: The global problem of introduced earthworms. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 593-613. [CrossRef]
- Baker, G.H.; Barrett, V.J.; Grey-Gardner, R.; Bucker, J.C. The life history and abundance of the introduced earthworms Aporrectodae trapezoids and Aporrectodae caliginosa in pasture soils in the Mount Lofty Range, South Australia. Aust. J. Ecol. 1992, 17, 177-188. [CrossRef]
- Ramprabesh, P.C. Role of Earthworms in Soil Fertility and Factors Affecting Their Population Dynamics: A Review. Int. J. Res. 2014, 1, 642-649.
- Duiker, S.; Stehouwer, R. Earthworms. 2007. Available online: http://pubs.cas.psu.edu/freepubs/pdfs/uc182.pdf (accessed on 16 March 2022).
- Menezes-Oliveira, V.; Scott-Fordsmand, J.; Rocco, A.; Soares, A.; Amorim, M. Interaction between density and Cu toxicity for Enchytraeus crypticus and Eisenia fetida reflecting field scenarios. Sci. Total Environ. 2011, 409, 3370-3374. [CrossRef] [PubMed]
- Kennedy, C.; Cuddihy, J.; Engel-Yan, J. The changing metabolism of cities. J. Ind. Ecol. 2007, 11, 43-59. [CrossRef]
- Johnsonmaynard, J.; Umiker, K.; Guy, S. Earthworm dynamics and soil physical properties in the first three years of no-till management. Soil Tillage Res. 2007, 94, 338-345. [CrossRef]
- Eriksen-Hamel, N.S.; Whalen, J.K. Impacts of earthworms on soil nutrients and plant growth in soybean and maize agroecosys- tems. Agric. Ecosyst. Environ. 2007, 120, 442-448. [CrossRef]
FAQs
AI
What explains the relationship between earthworms and soil microbial communities?add
The study reveals that earthworms significantly alter soil microbial communities, enriching them particularly with bacterial taxa capable of decomposing organic matter. The interaction creates a 'hot moment' effect, enhancing microbial activity and diversity within localized soil regions.
How do agricultural practices impact earthworm populations?add
Tillage practices were shown to decrease earthworm populations significantly, particularly in clay loam soils. Conversely, no-tillage management systems encourage earthworm abundance, showcasing the adaptability of earthworm communities to various agricultural practices.
What are the mechanisms by which earthworms enhance soil fertility?add
Earthworms improve soil fertility by enhancing organic matter turnover and nutrient cycling, significantly increasing nitrogen availability through the decomposition of their biomass. It is estimated that Lumbricus terrestris alone can return 60-70 kg of nitrogen per year to English woodlands.
How do earthworms affect nitrogen and phosphorus dynamics in soils?add
The paper indicates that earthworms enhance nitrogen mineralization, with up to 70% mineralization occurring within 20-10 days post-decomposition. Earthworm casts demonstrate significantly higher concentrations of available phosphorus, up to four times greater than surrounding soils.
What impact do earthworms have on soil structure and water retention?add
Earthworms improve soil structure by creating macro-pores that enhance water infiltration and retention, potentially decreasing runoff by up to 75%. Their burrowing activities also lead to more stable soil aggregates, important for maintaining soil fertility.