Spectra of constructs of a system of operators (original) (raw)

Abstract

This paper describes the spectrum and the upper and lower Fredholm spectra of ( n + m ) (n + m) -tuples ( F ( A 1 ) , ⋯ , F ( A n ) , G ( B 1 ) , ⋯ , G ( B m ) ) (F({A_1}), \cdots ,F({A_n}),G({B_1}), \cdots ,G({B_m})) of operators, where ( A i ) ({A_i}) and ( B j ) ({B_j}) are systems of operators in two Hilbert spaces H 1 {\mathcal {H}_1} and H 2 {\mathcal {H}_2} , and F F and G G are certain linear operators defined on L ( H i ) \mathcal {L}({\mathcal {H}_i}) . Using spectral mapping theorems the spectra of operators constructed by the action of a polynomial on a system ( F ( A 1 ) , ⋯ , F ( A n ) , G ( B 1 ) , ⋯ , G ( B m ) ) (F({A_1}), \cdots ,F({A_n}),G({B_1}), \cdots ,G({B_m})) is obtained. In particular, the spectra of the elementary operator and tensor products of operators is determined.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (14)

  1. J. Buoni, R. Harte and T. Wickstead, Upper and lower Fredholm spectra, Proc. Amer. Math.
  2. Soc. 66 (1977), 309-314.
  3. A. Brown and C. Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc. 17 (1966), 162-169.
  4. S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin algebras and algebras of operators on Banach spaces, Lecture Notes in Pure and Appl. Math., Vol. 9, Dekker, New York, 1974.
  5. R. Curto, The spectrum of elementary operators, Abstracts Amer. Math. Soc. 2 (1981), 552.
  6. L. A. Fialkow, Elements of spectral theory for generalized derivations. II, Cañad. J. Math. 33 (1981), 1205-1231.
  7. _, Essential spectra of elementary operators, Trans. Amer. Math. Soc. 267 (1981), 157-173.
  8. R. Harte, Spectral mapping theorems, Proc. Roy. Irish. Acad. Sect. A 72 (1972), 89-107.
  9. _, Spectral mapping theorems on a tensor product, Bull. Amer. Math. Soc. 79 (1973), 367-372.
  10. T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, Heidelberg and New York, 1976.
  11. G. Lumer and M. Rosenblum, Linear operator equations, Proc. Amer. Math. Soc. 10 (1959), 32-41.
  12. E. de Oteyza, Sobre la figura espectral ael producto tensorial de dos operadores, M. S. Thesis, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, 1980.
  13. C. Pearcy, Some recent developments in operator theory, CBMS Regional Conf. Ser. in Math., no. 36, Amer. Math. Soc, 1978.
  14. INSTITUTO DE MATEMÁTICAS, UNIVERSIDAD NACIONAL AUTÓNOMA DE MEXICO, CIU- DAD UNIVERSITARIA, MEXICO, D.F. 04510