Validation of the summertime surface energy budget of Larsen C Ice Shelf (Antarctica) as represented in three high-resolution atmospheric models (original) (raw)
Abstract
We compare measurements of the turbulent and radiative surface energy fluxes from an automatic weather station (AWS) on Larsen C Ice Shelf, Antarctica with corresponding fluxes from three high-resolution atmospheric models over a 1 month period during austral summer. All three models produce a reasonable simulation of the (relatively small) turbulent energy fluxes at the AWS site. However, biases in the modeled radiative fluxes, which dominate the surface energy budget, are significant. There is a significant positive bias in net shortwave radiation in all three models, together with a corresponding negative bias in net longwave radiation. In two of the models, the longwave bias only partially offsets the positive shortwave bias, leading to an excessive amount of energy available for heating and melting the surface, while, in the third, the negative longwave bias exceeds the positive shortwave bias, leading to a deficiency in calculated surface melt. Biases in shortwave and longwave radiation are anticorrelated, suggesting that they both result from the models simulating too little cloud (or clouds that are too optically thin). We conclude that, while these models may be able to provide some useful information on surface energy fluxes, absolute values of modeled melt rate are significantly biased and should be used with caution. Efforts to improve model simulation of melt should initially focus on the radiative fluxes and, in particular, on the simulation of the clouds that control these fluxes.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (35)
- Best, M. J., et al. (2011), The Joint UK Land Environment Simulator (JULES), model description-Part 1: Energy and water fluxes, Geosci. Model Dev., 4(3), 677-699, doi:10.5194/gmd-4-677-2011.
- Bromwich, D. H., F. O. Otieno, K. M. Hines, K. W. Manning, and E. Shilo (2013), Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic, J. Geophys. Res. Atmos., 118, 274-292, doi:10.1029/2012JD018139.
- Cassano, J. J., T. R. Parish, and J. C. King (2001), Evaluation of turbulent surface flux parameterizations for the stable surface layer over Halley, Antarctica, Mon. Weather Rev., 129(1), 26-46.
- Cook, A. J., and D. G. Vaughan (2012), Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years, Cryosphere, 4(1), 77-98.
- Dee, D. P., et al. (2011), The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137(656), 553-597, doi:10.1002/qj.828.
- Edwards, J. M., and A. Slingo (1996), Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model, Q. J. R. Meteorol. Soc., 122(531), 689-719, doi:10.1002/qj.49712253107.
- Ettema, J., M. R. van den Broeke, E. van Meijgaard, and W. J. van de Berg (2010), Climate of the Greenland ice sheet using a high-resolution climate model-Part 2: Near-surface climate and energy balance, Cryosphere, 4(4), 529-544, doi:10.5194/tc-4-529-2010.
- Grosvenor, D. P., T. W. Choularton, T. Lachlan-Cope, M. W. Gallagher, J. Crosier, K. N. Bower, R. S. Ladkin, and J. R. Dorsey (2012), In-situ aircraft observations of ice concentrations within clouds over the Antarctic Peninsula and Larsen Ice Shelf, Atmos. Chem. Phys., 12(23), 11,275-11,294, doi:10.5194/acp-12-11275-2012.
- Hines, K. M., and D. H. Bromwich (2008), Development and testing of polar Weather Research and Forecasting (WRF) Model. Part I: Greenland ice sheet meteorology, Mon. Weather Rev., 136(6), 1971-1989.
- Hong, S.-Y., J. Dudhia, and S.-H. Chen (2004), A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation, Mon. Weather Rev., 132(1), 103-120, doi:10.1175/1520-0493(2004)132<0103:aratim>2.0.co;2.
- Huhn, O., H. H. Hellmer, M. Rhein, C. Rodehacke, W. Roether, M. P. Schodlok, and M. Schröder (2008), Evidence of deep-and bottom-water formation in the western Weddell Sea, Deep Sea Res., Part II, 55, 1098-1116.
- King, J., T. Lachlan-Cope, R. Ladkin, and A. Weiss (2008), Airborne measurements in the stable boundary layer over the Larsen Ice Shelf, Antarctica, Boundary Layer Meteorol., 127(3), 413-428.
- King, J. C., and W. M. Connolley (1997), Validation of the surface energy balance over the Antarctic ice sheets in the U.K. Meteorological Office Unified Climate Model, J. Clim., 10, 1273-1287.
- Kuipers Munneke, P., M. R. van den Broeke, C. H. Reijmer, M. M. Helsen, W. Boot, M. Schneebeli, and K. Steffen (2009), The role of radiation penetration in the energy budget of the snowpack at Summit, Greenland, Cryosphere, 3(2), 155-165.
- Kuipers Munneke, P., M. R. van den Broeke, J. T. M. Lenaerts, M. G. Flanner, A. S. Gardner, and W. J. van de Berg (2011), A new albedo parameterization for use in climate models over the Antarctic ice sheet, J. Geophys. Res., 116, D05114, doi:10.1029/2010JD015113.
- Kuipers Munneke, P., M. R. van den Broeke, J. C. King, T. Gray, and C. H. Reijmer (2012), Near-surface climate and surface energy budget of Larsen C Ice Shelf, Antarctic Peninsula, Cryosphere, 6(2), 353-363, doi:10.5194/tc-6-353-2012.
- Lachlan-Cope, T. (2011), Antarctic clouds, Polar Res., 29(2), 150-158.
- Lenaerts, J. T. M., M. R. van den Broeke, S. J. Déry, E. van Meijgaard, W. J. van de Berg, S. P. Palm, and J. Sanz Rodrigo (2012), Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation, J. Geophys. Res., 117, D05108, doi:10.1029/ 2011JD016145.
- Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith (2000), A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests, Mon. Weather Rev., 128(9), 3187-3199, doi:10.1175/1520-0493(2000)128<3187:anblms>2.0.co;2.
- Marshall, G. J., A. Orr, N. P. M. van Lipzig, and J. C. King (2006), The impact of a changing Southern Hemisphere Annular Mode on Antarctic Peninsula summer temperatures, J. Clim., 19(20), 5388-5404.
- Orr, A., T. Phillips, S. Webster, A. Elvidge, M. Weeks, S. Hosking, and J. Turner (2014), Met Office Unified Model high-resolution simulations of a strong wind event in Antarctica, Q. J. R. Meteorol. Soc., 140(684), 2287-2297, doi:10.1002/qj.2296.
- Peck, L. S., D. K. A. Barnes, A. J. Cook, A. H. Fleming, and A. Clarke (2009), Negative feedback in the cold: Ice retreat produces new carbon sinks in Antarctica, Global Change Biol., 16(9), 2614-2623.
- Powers, J. G., K. W. Manning, D. H. Bromwich, J. J. Cassano, and A. M. Cayette (2012), A decade of Antarctic science support through AMPS, Bull. Am. Meteorol. Soc., 93(11), 1699-1712, doi:10.1175/bams-d-11-00186.1.
- Rignot, E., G. Casassa, P. Gogineni, W. Krabill, A. Rivera, and R. Thomas (2004), Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B Ice Shelf, Geophys. Res. Lett., 31, L18401, doi:10.1029/2004GL020697.
- Scambos, T. A., C. Hulbe, M. Fahnestock, and J. Bohlander (2000), The link between climate warming and break-up of ice shelves in the Antarctic Peninsula, J. Glaciol., 46(154), 516-530.
- Seefeldt, M. W., and J. J. Cassano (2008), An analysis of low-level jets in the Greater Ross Ice Shelf region based on numerical simulations, Mon. Weather Rev., 136(11), 4188-4205.
- Steinhoff, D. F., S. Chaudhuri, and D. H. Bromwich (2009), A case study of a Ross Ice Shelf airstream event: A new perspective, Mon. Weather Rev., 137(11), 4030-4046.
- Turner, J., S. R. Colwell, G. J. Marshall, T. A. Lachlan-Cope, A. M. Carleton, P. D. Jones, V. Lagun, P. A. Reid, and S. Iagovkina (2005), Antarctic climate change during the last 50 years, Int. J. Climatol., 25(3), 279-294.
- Välisuo, I., T. Vihma, and J. C. King (2014), Surface energy budget on Larsen and Wilkins Ice Shelves in the Antarctic Peninsula: Results based on reanalyses in 1989-2010, Cryosphere, 8, 1519-1538, doi:10.5194/tc-8-1519-2014.
- Valkonen, T., T. Vihma, M. M. Johansson, and J. Launiainen (2013), Atmosphere-sea ice interaction in early summer in the Antarctic: Evaluation and challenges of a regional atmospheric model, Q. J. R. Meteorol. Soc., 140, 1536-1551, doi:10.1002/qj.2237.
- van den Broeke, M. (2005), Strong surface melting preceded collapse of Antarctic Peninsula ice shelf, Geophys. Res. Lett., 32, L12815, doi:10.1029/2005GL023247.
- van Lipzig, N. P. M., G. J. Marshall, A. Orr, and J. C. King (2008), The relationship between the Southern Hemisphere Annular Mode and Antarctic Peninsula summer temperatures: Analysis of a high-resolution model climatology, J. Clim., 21, 1649-1668.
- van Wessem, J. M., C. H. Reijmer, J. T. M. Lenaerts, W. J. van de Berg, M. R. van den Broeke, and E. van Meijgaard (2014), Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica, Cryosphere, 8(1), 125-135, doi:10.5194/tc-8-125-2014.
- Wilson, A. B., D. H. Bromwich, and K. M. Hines (2012), Evaluation of Polar WRF forecasts on the Arctic System Reanalysis Domain: 2. Atmospheric hydrologic cycle, J. Geophys. Res., 117, D04107, doi:10.1029/2011JD016765.
- Wilson, D. R., and S. P. Ballard (1999), A microphysically based precipitation scheme for the UK meteorological office unified model, Q. J. R. Meteorol. Soc., 125(557), 1607-1636, doi:10.1002/qj.49712555707.