Cell organisation, sulphur metabolism and ion transport-related genes are differentially expressed in Paracoccidioides brasiliensis mycelium and yeast cells (original) (raw)
Related papers
Eukaryotic …, 2005
which reach the pulmonary epithelium and transform into the yeast parasitic form. Thus, the mycelium-toyeast transition is of particular interest because conversion to yeast is essential for infection. We have used a P. brasiliensis biochip carrying sequences of 4,692 genes from this fungus to monitor gene expression at several time points of the mycelium-to-yeast morphological shift (from 5 to 120 h). The results revealed a total of 2,583 genes that displayed statistically significant modulation in at least one experimental time point. Among the identified gene homologues, some encoded enzymes involved in amino acid catabolism, signal transduction, protein synthesis, cell wall metabolism, genome structure, oxidative stress response, growth control, and development. The expression pattern of 20 genes was independently verified by real-time reverse transcription-PCR, revealing a high degree of correlation between the data obtained with the two methodologies. One gene, encoding 4-hydroxyl-phenyl pyruvate dioxygenase (4-HPPD), was highly overexpressed during the myceliumto-yeast differentiation, and the use of NTBC [2-(2-nitro-4-trifluoromethylbenzoyl)-cyclohexane-1,3-dione], a specific inhibitor of 4-HPPD activity, as well as that of NTBC derivatives, was able to inhibit growth and differentiation of the pathogenic yeast phase of the fungus in vitro. These data set the stage for further studies involving NTBC and its derivatives as new chemotherapeutic agents against PCM and confirm the potential of array-based approaches to identify new targets for the development of alternative treatments against pathogenic microorganisms.
Molecular Genetics and …, 2006
The dimorphic pathogenic fungus Paracoccidioides brasiliensis can grow as a prototroph for organic sulfur as a mycelial (non-pathogenic) form, but it is unable to assimilate inorganic sulfur as a yeast (pathogenic) form. Temperature and the inability to assimilate inorganic sulfur are the single conditions known to aVect P. brasiliensis mycelium-to-yeast (M-Y) dimorphic transition. For a comprehensive evaluation of genes that have their expression modulated during the MY transition in diVerent culture media, we performed a large-scale analysis of gene expression using a microarray hybridization approach. The results of the present work demonstrate the use of microarray hybridization analysis to examine gene expression during the MY transition in minimal medium and compare these results with the MY transition in complete medium. Our results showed that about 95% of the genes in our microarray are mainly responding to the temperature trigger, independently of the media where the MY transition took place. As a preliminary step to understand the inorganic sulfur inability in P. brasiliensis yeast form, we decided to characterize the mRNA accumulation of several genes involved in diVerent aspects of both organic and inorganic sulfur assimilation. Our results suggest that although P. brasiliensis cannot use inorganic sulfur as a single sulfur source to initiate both MY transition and Y growth, the fungus can somehow use both organic and inorganic pathways during these growth processes.
Journal of Biological Chemistry, 2005
Paracoccidioides brasiliensis is the causative agent of paracoccidioidomycosis, a disease that affects 10 million individuals in Latin America. This report depicts the results of the analysis of 6,022 assembled groups from mycelium and yeast phase expressed sequence tags, covering about 80% of the estimated genome of this dimorphic, thermo-regulated fungus. The data provide a comprehensive view of the fungal metabolism, including overexpressed transcripts, stage-specific genes, and also those that are up-or down-regulated as assessed by in silico electronic subtraction and cDNA microarrays. Also, a significant differential expression pattern in mycelium and yeast cells was detected, which was confirmed by Northern blot analysis, providing insights into differential metabolic adaptations. The overall transcriptome analysis provided information about sequences related to the cell cycle, stress response, drug resistance, and signal transduction pathways of the * This work was supported by MCT, CNPq, CAPES, FUB, UFG, and FUNDECT-MS. □ S The on-line version of this article (available at http://www.jbc.org) contains nine additional tables.
Mycopathologia, 2008
The ascomycete Paracoccidioides brasiliensis is a human pathogen with a broad distribution in Latin America. The infection process of P. brasiliensis is initiated by aerially dispersed mycelia propagules, which differentiate into the yeast parasitic phase in human lungs. Therefore, the transition to yeast is an initial and fundamental step in the infective process. In order to identify and characterize genes involved in P. brasiliensis transition to yeast, which could be potentially associated to early fungal adaptation to the host, expressed sequence tags (ESTs) were examined from a cDNA library, prepared from mycelia ongoing differentiation to yeast cells. In this study, it is presented a screen for a set of genes related to protein synthesis and to protein folding/modification/destination expressed during morphogenesis from mycelium to yeast. Our analysis revealed 43 genes that are induced during the early transition process, when compared to mycelia. In addition, eight novel genes related to those processes were described in the P. brasiliensis transition cDNA library. The types of induced and novel genes in the transition cDNA library highlight some metabolic aspects, such as putative increase in protein synthesis, in protein glycosylation, and in the control of protein folding that seem to be relevant to the fungal transition to the parasitic phase.
Functional genome of the human pathogenic fungus Paracoccidioides brasiliensis
Fems Immunology and Medical Microbiology, 2005
Paracoccidioides brasiliensis is a dimorphic and thermo-regulated fungus which is the causative agent of paracoccidioidomycosis, an endemic disease widespread in Latin America. Pathogenicity is assumed to be a consequence of the cellular differentiation process that this fungus undergoes from mycelium to yeast cells during human infection. In an effort to elucidate the molecular mechanisms involved in this process a network of Brazilian laboratories carried out a transcriptome project for both cell types. This review focuses on the data analysis yielding a comprehensive view of the fungal metabolism and the molecular adaptations during dimorphism in P. brasiliensis from analysis of 6022 groups, related to expressed genes, which were generated from both mycelium and yeast phases.
Functional genome of the human pathogenic fungusParacoccidioides brasiliensis
Fems Immunology and Medical Microbiology, 2005
Paracoccidioides brasiliensis is a dimorphic and thermo-regulated fungus which is the causative agent of paracoccidioidomycosis, an endemic disease widespread in Latin America. Pathogenicity is assumed to be a consequence of the cellular differentiation process that this fungus undergoes from mycelium to yeast cells during human infection. In an effort to elucidate the molecular mechanisms involved in this process a network of Brazilian laboratories carried out a transcriptome project for both cell types. This review focuses on the data analysis yielding a comprehensive view of the fungal metabolism and the molecular adaptations during dimorphism in P. brasiliensis from analysis of 6022 groups, related to expressed genes, which were generated from both mycelium and yeast phases.