Quality assessment of electroencephalography obtained from a “dry electrode” system (original) (raw)

A Validation of a Prototype Dry Electrode System for Electroencephalography

2011

Current physiologically-driven operator cognitive state assessment technology relies primarily on electroencephalographic (EEG) signals. Traditionally, gel-based electrodes have been used; however, the application of gel-based electrodes on the scalp requires expertise and a considerable amount of preparation time. Additionally, discomfort can occur from the abrasion of the scalp during preparation, and the electrolyte will also begin to dry out over extended periods of time. These drawbacks have hindered the transition of operator state assessment technology into an operational environment. QUASAR, Inc., (San Diego, CA) has developed a prototype dry electrode system for electroencephalography that requires minimal preparation. A comparison of the dry electrode system to traditional wet electrodes was conducted and is presented here. The results show that initially the EEG recorded by the dry electrode system was quite similar to that recorded by the wet electrodes, but the similarity decreased over a testing period of six months. For cognitive state assessment, the dry electrodes were able to achieve classification accuracies within one to two percent of those achieved by the wet electrodes, with no decrease in accuracy over time. The results suggest that the dry electrode system is capable of recording electroencephalographic signals to be used in cognitive state assessment, and aiding in the transition of that technology into an operational environment. Further work should be conducted to improve the reliability of this novel system.

Validation of Electroencephalographic Recordings Obtained with a Consumer-Grade, Single Dry Electrode, Low-Cost Device: A Comparative Study

Sensors

The functional validity of the signal obtained with low-cost electroencephalography (EEG) devices is still under debate. Here, we have conducted an in-depth comparison of the EEG-recordings obtained with a medical-grade golden-cup electrodes ambulatory device, the SOMNOwatch + EEG-6, vs those obtained with a consumer-grade, single dry electrode low-cost device, the NeuroSky MindWave, one of the most affordable devices currently available. We recorded EEG signals at Fp1 using the two different devices simultaneously on 21 participants who underwent two experimental phases: a 12-minute resting state task (alternating two cycles of closed/open eyes periods), followed by 60-minute virtual-driving task. We evaluated the EEG recording quality by comparing the similarity between the temporal data series, their spectra, their signal-to-noise ratio, the reliability of EEG measurements (comparing the closed eyes periods), as well as their blink detection rate. We found substantial agreement b...

Framework for evaluating EEG signal quality of dry electrode recordings

2013 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2013

Dry electrodes provide the possibility of moving EEG usage from the research and clinical environment to real life applications. Having a framework for evaluating the performance of dry electrodes would facilitate this process and help EEG system developers to test their designs. This paper describes an evaluation method for dry electrode EEG recordings. The framework includes a setup for synchronous recordings with a parallel dry and gel electrode montage procedure. Several protocols are implemented to evaluate both the time and frequency content of the signal and to compute the setup and settling time. Signal quality was evaluated using signal correlations, SNR and P300 component characteristics. The preliminary data analysis and results show that a comparison between gel and dry electrodes is possible but improvements need to be made to the current evaluation framework.

The Dry Revolution: Evaluation of Three Different EEG Dry Electrode Types in Terms of Signal Spectral Features, Mental States Classification and Usability

Sensors

One century after the first recording of human electroencephalographic (EEG) signals, EEG has become one of the most used neuroimaging techniques. The medical devices industry is now able to produce small and reliable EEG systems, enabling a wide variety of applications also with no-clinical aims, providing a powerful tool to neuroscientific research. However, these systems still suffer from a critical limitation, consisting in the use of wet electrodes, that are uncomfortable and require expertise to install and time from the user. In this context, dozens of different concepts of EEG dry electrodes have been recently developed, and there is the common opinion that they are reaching traditional wet electrodes quality standards. However, although many papers have tried to validate them in terms of signal quality and usability, a comprehensive comparison of different dry electrode types from multiple points of view is still missing. The present work proposes a comparison of three diff...

Comparison of a Novel Dry Electrode Headset to Standard Routine EEG in Veterans

Journal of Clinical Neurophysiology, 2016

Objective: This purpose of this study was to evaluate the usefulness of a prototype battery-powered dry electrode system (DES) EEG recording headset in Veteran patients by comparing it with standard EEG. Methods: Twenty-one Veterans had both a standard electrode system recording and DES recording in nine different patient states at the same encounter. Setup time, patient comfort, and subject preference were measured. Three experts performed technical quality rating of each EEG recording in a blinded fashion using the web-based EEGnet system. Power spectra were compared between DES and standard electrode system recordings. Results: The average time for DES setup was 5.7 minutes versus 21.1 minutes for standard electrode system. Subjects reported that the DES was more comfortable during setup. Most subjects (15 of 21) preferred the DES. On a five-point scale (1—best quality to 5—worst quality), the technical quality of the standard electrode system recordings was significantly better ...

Validation of a wireless dry electrode system for electroencephalography

Journal of NeuroEngineering and Rehabilitation, 2015

Background: Electroencephalography (EEG) is a widely used neuroimaging technique with applications in healthcare, research, assessment, treatment, and neurorehabilitation. Conventional EEG systems require extensive setup time, expensive equipment, and expertise to utilize and therefore are often limited to clinical or laboratory settings. Technological advancements have made it possible to develop wireless EEG systems with dry electrodes to reduce many of these barriers. However, due to the lack of homogeneity in hardware, electrode evaluation, and methodological procedures the clinical acceptance of these systems has been limited. Methods: In this investigation the validity of a wireless dry electrode system compared to a conventional wet electrode system was assessed, while addressing methodological limitations. In Experiment 1, the signal output of both EEG systems was examined at Fz, C3, Cz, C4, and Pz using a conductive head model and generated test signals at 2.5 Hz, 10 Hz, and 39 Hz. In Experiment 2, two-minutes of eyes-closed and eyes-open EEG data was recorded simultaneously with both devices from the adjacent electrode sites in a sample of healthy adults. Results: Between group effects and frequency*device and electrode*device interactions were assessed using a mixed ANOVA for the simulated and in vivo signal output, producing no significant effects. Bivariate correlation coefficients were calculated to assess the relationship between electrode pairs during the simultaneous in vivo recordings, indicating a significant positive relationship (all p's < .05) and larger correlation coefficients (r > ± 0.5) between the dry and wet electrode signal amplitude were observed for theta, alpha, beta 1, beta 2, beta 3, and gamma in both the eyes-closed and eyes-open conditions. Conclusions: This report demonstrates preliminary but compelling evidence that EEG data recorded from the wireless dry electrode system is comparable to data recorded from a conventional system. Small correlation values in delta activity were discussed in relation to minor differences in hardware filter settings, variation in electrode placement, and participant artifacts observer during the simultaneous EEG recordings. Study limitations and impact of this research on neurorehabilitation were discussed.

{"__content__"=>"Diagnostic and therapeutic yield of a patient-controlled portable EEG device with dry electrodes for home-monitoring neurological outpatients-rationale and protocol of the HOME pilot study.", "sup"=>{"__content__"=>"ONE"}}

Pilot and feasibility studies, 2018

The HOME study is part of the larger project, which aims to provide evidence of diagnostic and therapeutic yield ("change of management") of a patient-controlled portable EEG device with dry electrodes for the purposes of EEG home-monitoring neurological outpatients. The HOME study is the first step in the process of investigating whether outpatient EEG home-monitoring changes the diagnosis and treatment of patients in comparison to conventional EEG ("change of management"). Both EEG devices (conventional and portable) will be systematically compared via a two-phase intra-individual assessment.In the first phase (pilot study phase), both EEG devices will be used within neurologist practices (all other things being equal). This pilot study (involving 130 patients) will evaluate the technical usability and efficacy of the new portable dry electrode EEG recorder in comparison to conventional EEG devices. Judgements will be based on technical assessments and EEG reco...

EEG Signal Quality of a Subcutaneous Recording System Compared to Standard Surface Electrodes

Journal of Sensors, 2015

Purpose. We provide a comprehensive verification of a new subcutaneous EEG recording device which promises robust and unobtrusive measurements over ultra-long time periods. The approach is evaluated against a state-of-the-art surface EEG electrode technology.Materials and Methods. An electrode powered by an inductive link was subcutaneously implanted on five subjects. Surface electrodes were placed at sites corresponding to the subcutaneous electrodes, and the EEG signals were evaluated with both quantitative (power spectral density and coherence analysis) and qualitative (blinded subjective scoring by neurophysiologists) analysis.Results. The power spectral density and coherence analysis were very similar during measurements of resting EEG. The scoring by neurophysiologists showed a higher EEG quality for the implanted system for different subject states (eyes open and eyes closed). This was most likely due to higher amplitude of the subcutaneous signals. During periods with artifa...

Review Dry and Non-contact EEG Electrodes for 2010-2021 years

The basis of the work of electroencephalography (EEG) is the registration of electrical impulses from the brain or some of its individual areas using a special sensor/electrode. This method is used for the treatment and diagnosis of various diseases. The use of wet electrodes in this case does not seem viable, for several well-known reasons. As a result of this, a detailed analysis of modern EEG sensors developed over the past few years is carried out, which will allow researchers to choose this type of sensor more carefully and, as a result, conduct their research more competently. Due to the absence of any standards in the production and testing of dry EEG sensors, the main moment of this manuscript is a detailed description of the necessary steps for testing a dry electrode, which will allow researchers to maximize the potential of the sensor in the various type of research.