Monotonicity and Circular Cone Monotonicity Associated with Circular Cones (original) (raw)
Abstract
The circular cone L θ is not self-dual under the standard inner product and includes second-order cone as a special case. In this paper, we focus on the monotonicity of f L θ and circular cone monotonicity of f. Their relationship is discussed as well. Our results show that the angle θ plays a different role in these two concepts.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (33)
- Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95, 3-51 (2003)
- Bonnans, J.F., Ramirez, H.: Perturbation analysis of second-order cone programming problems. Math. Program. 104, 205-227 (2005)
- Chen, J.-S., Tseng, P.: An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math. Program. 104, 293-327 (2005)
- Chang, Y.-L., Yang, C.-Y., Chen, J.-S.: Smooth and nonsmooth analysis of vector-valued functions associated with circular cones. Nonlinear Anal. Theory Methods Appl. 85, 160-173 (2013)
- Chen, J.-S.: The convex and monotone functions associated with second-order cone. Optimization 55(4), 363-385 (2006)
- Chen, J.-S., Chen, X., Tseng, P.: Analysis of nonsmooth vector-valued functions associated with second- order cone. Math. Program. 101, 95-117 (2004)
- Chen, J.-S., Chen, X., Pan, S.-H., Zhang, J.: Some characterizations for SOC-monotone and SOC-convex functions. J. Glob. Optim. 45, 259-279 (2009)
- Chen, J.-S., Liao, T.-K., Pan, S.-H.: Using Schur complement theorem to prove convexity of some SOC- functions. J. Nonlinear Convex Anal. 13, 421-431 (2012)
- Chen, J.-S., Pan, S.-H.: A survey on SOC complementarity functions and solution methods for SOCPs and SOCCPs. Pac. J. Optim. 8, 33-74 (2012)
- Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
- Dattorro, J.: Convex Optimization and Euclidean Distance Geometry. Meboo Publishing, California (2005)
- Ding, C., Sun, D., Toh, K.C.: An introduction to a class of matrix cone programming. Math. Program. 144, 141-179 (2014)
- Faraut, U., Korányi, A.: Analysis on Symmetric Cones. Oxford Mathematical Monographs. Oxford University Press, New York (1994)
- Fukushima, M., Luo, Z.Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 12, 436-460 (2002)
- Guler, O., Tuncel, L.: Characterization of the barrier parameter of homogeneous convex cones. Math. Program. 81, 55-76 (1998)
- Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim. 15, 593-615 (2005)
- Kanzow, C., Ferenczi, I., Fukushima, M.: On the local convergence of semismooth Newton methods for linear and nonlinear second-order cone programs without strict complementarity. SIAM J. Optim. 20, 297-320 (2009)
- Kong, L.C., Tuncel, L., Xiu, N.H.: Monotonicity of Lowner operators and its applications to symmetric cone complementarity problems. Math. Program. 133, 327-336 (2012)
- Liu, Y.J., Zhang, L.W.: Convergence analysis of the augmented Lagrangian method for nonlinear second- order cone optimization problems. Nonlinear Anal. Theory Methods Appl. 67, 1359-1373 (2007)
- Miao, X.-H., Guo, S.-J., Qi, N., Chen, J.-S.: Constructions of complementarity functions and merit functions for circular cone complementarity problem. Comput. Optim. Appl. 63, 495-522 (2016)
- Pan, S.-H., Chen, J.-S.: A class of interior proximal-like algorithms for convex second-order cone programming. SIAM J. Optim. 19, 883-910 (2008)
- Pan, S.-H., Chen, J.-S.: An R-linearly convergent nonmonotone derivative-free method for symmetric cone complementarity problems. Adv. Model. Optim. 13, 185-211 (2011)
- Pan, S.-H., Chang, Y.-L., Chen, J.-S.: Stationary point conditions for the FB merit function associated with symmetric cones. Oper. Res. Lett. 38, 372-377 (2010)
- Pan, S.-H., Chiang, Y., Chen, J.-S.: SOC-Monotone and SOC-convex functions v.s. matrix-monotone and matrix-convex functions. Linear Algebra Appl. 437(5), 1264-1284 (2012)
- Roos, K. http://www.isa.ewi.tudelft.nl/ ∼ roos/course/WI4218/SLemma.pdf
- Rockafellar, R.T., Wets, R.J.: Variational Analysis. Springer, New York (1998)
- Schmieta, S.H., Alizadeh, F.: Extension of primal-dual interior point algorithms to symmetric cones. Math. Program. 96, 409-438 (2003)
- Sun, D., Sun, J.: Strong semismoothness of the Fischer-Burmeister SDC and SOC complementarity functions. Math. Program. 103, 575-581 (2005)
- Truong, V.A., Tuncel, L.: Geometry of homogeneous cones: duality mapping and optimal selfconcordant barriers. Math. Program. 100, 295-316 (2004)
- Xue, G., Ye, Y.: An efficient algorithm for minimizing a sum of p-norms. SIAM J. Optim. 10, 551-579 (2000)
- Zhou, J.-C., Chen, J.-S.: Properties of circular cone and spectral factorization associated with circular cone. J. Nonlinear Convex Anal. 14, 807-816 (2013)
- Zhou, J.-C., Chen, J.-S.: On the vector-valued functions associated with circular cones. Abstr. Appl. Anal. 2014(603542), 21 (2014)
- Zhou, J.-C., Chen, J.-S., Hung, H.-F.: Circular cone convexity and some inequalities associated with circular cones. J. Inequalities Appl. 2013(571), 17 (2013)