Bressan et al SBTE 2011 Reprogramming somatic cells trough gene induction and nuclear reprogramming (original) (raw)

Abstract

The understanding of nuclear reprogramming pathways provides important contributions to applied and basic sciences such as the development of autologous cellular therapies for the treatment of numerous diseases, the improved efficiency of animal-based biotechnology or the generation of functional gametes in vitro. Strategies such as nuclear transfer and induced reprogramming have been used to induce somatic cells into an embryonic-like pluripotent state. Both techniques have been routinely performed worldwide, and live offspring have been successfully derived from them, resulting in a proof of efficacy of both techniques. Detailed studies on cellular and molecular mechanisms that mediate reprogramming, however, still require further investigation to develop practical applications in veterinary and human medicine. Review: Studies on cell reprogramming, differentiation and proliferation have revealed that a core of transcription factors, as for example, OCT4, SOX2 and NANOG, act together promoting cell commitment or pluripotency. Mechanisms of induced reprogramming by pluripotency-related transcription factors forced expression or nuclear transfer seems to be mediated by the same pathways observed in fertilization, eliciting nuclear remodeling and modulating gene expression. However, abnormal chromatin conformation, often leading to disrupted imprinting and atypical gene expression patterns are frequently observed on in vitro reprogramming. Strategies used to facilitate nuclear remodeling, such as chromatin modifying agents, as for example, histone deacetilases inhibitors or DNA methyltransferases; or chemicals responsible for the inhibition of developmentrelated pathways, as for example, MEK and GSK3 inhibitors, when used in the in vitro culture of cells or embryos, have proved to favors transcriptional regulation and improve reprogramming. Such alternatives are highly prone to enable the routine use of in vitro reprogramming in animal production and medical sciences, for example, by promoting the generation of functional male and female functional gametes capable of producing viable offspring. Thus, the properties, deficiencies and implications of induced reprogramming and nuclear transfer techniques in somatic cells were discussed in this review, as well as its probable outcomes.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (71)

  1. Gurdon J.B., Elsdalee T.R., Fischberg M. 1958. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature. 182(4627): 64-65.
  2. Han J.W. & Yoon Y.S. 2011. Induced Pluripotent Stem Cells: Emerging Techniques for Nuclear Reprogramming. Antioxid Redox Signal. May: 1-20.
  3. Heyman Y., Chavatte-Palmer P., Lebourhis D., Camous S., Vignone X. & Renard J.P. 2002. Frequency and occurrence of late-gestation losses from cattle cloned embryos. Biology of Reproduction. 66(1): 6-13.
  4. Hiiragi T. & Solter D. 2005. Reprogramming is essential in nuclear transfer. Molecular Reproduction and Development. 70(4): 417-421.
  5. Hill J.R., Roussel A.J., Cibelli J.B., Edwards J.F., Hooper N.L., Miller N.W., Thompson J.A., Looney C.R., Westhusin M.E., Roble J.M. & Stice S.L. 1999. Clinical and pathologic features of cloned transgenic calves and fetuses (13 case studies). Theriogenology. 51(8): 1451-1465.
  6. Hochedlinger K. & Jaenisch R. 2002. Nuclear transplantation: lessons from frogs and mice. Current opinions in Cell Biology 14(6): 741-748.
  7. Hochedlinger K. & Plath K. 2009. Epigenetic reprogramming and induced pluripotency. Development. 136(4): 509-523.
  8. Honda A., Hirose M., Hatori M., Matoba S., Miyoshi H., Inouee K. & Ogura A. 2010. Generation of induced pluripotent stem cells in rabbits: potential experimental models for human regenerative medicine. Journal of Biological Chemistry. 285(41): 31362-31369.
  9. Huangfu D., Osafune K., Maehr R., Guo W., Eijkelenboom A., Chen S., Muhlesteine W. & Melton D.A. 2008. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology. 26(11): 1269- 1275.
  10. Hubner K., Fuhrmann G., Christenson L.K., Kehler J., Reinbold R., De La Fuente R., Wood J., Strauss 3rd J.F., Boianie M. & Scholer H.R. 2003. Derivation of oocytes from mouse embryonic stem cells. Science. 300(5623): 1251-1256.
  11. Humpherys D., Eggan K., Akutsu H., Hochedlinger K., Rideout W.M. 3rd, Biniszkiewicz D., Yanagimachie R. & Jaenisch R. 2001. Epigenetic instability in ES cells and cloned mice. Science. 293(5527): 95-97.
  12. Iager A.E., Ragina N.P., Ross P.J., Beyhan Z., Cunniff K., Rodrigueze R.M. & Cibelli J.B. 2008. Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos. Cloning Stem Cells. 10(3): 371-379.
  13. Inoue K., Wakao H., Ogonuki N., Miki H., Seino K., Nambu-Wakao R., Noda S., Miyoshi S., Koseki H., Taniguchie M. & Ogura A. 2005.Generation of cloned mice by direct nuclear transfer from natural killer T cells. Current Biology. 15(12): 1114-1118.
  14. Iqbal K., Jin S.G., Pfeifere G.P. & Szabo P.E. 2011. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proceeding of the National Academy of Science. 108(9): 3642-3647.
  15. Ivanova N., Dobrin R., Lu R., Kotenko I., Levorse J., Decoste C., Schafer X., Lune Y. & Lemischka I.R. 2006. Dissecting self-renewal in stem cells with RNA interference. Nature. 442(7102): 533-538.
  16. Johnson B.V., Shindo N., Rathjen P.D., Rathjene J. & Keough R.A. 2008. Understanding pluripotency: how embryonic stem cells keep their options open. Molecular Human Reproduction. 14(9): 513-520.
  17. Kato Y., Tani T., Sotomaru Y., Kurokawa K., Kato J., Doguchi H., Yasuee H. & Tsunoda Y. 1998. Eight calves cloned from somatic cells of a single adult. Science. 282(5396): 2095-2098.
  18. Kim J.B., Zaehres H., Wu G., Gentile L., Ko K., Sebastiano V., Arauzo-Bravo M.J., Ruau D., Han D.W., Zenkee M. & Scholer H.R. 2008.Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature. 454(7204): 646-650.
  19. Kim M.K., Jang G., Oh H.J., Yuda F., Kim H.J., Hwang W.S., Hossein M.S., Kim J.J., Shin N.S., KangeS.K. & Lee B.C. 2007. Endangered wolves cloned from adult somatic cells. Cloning Stem Cells. 9(1): 130-137.
  20. Kishigami S., Mizutani E., Ohta H., Hikichi T., Thuan N.V., Wakayama S., Buie H.T. & Wakayama T. 2006. Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochemical and Biophysical Research Communications. 340(1): 183-189.
  21. Kuroiwa Y., Kasinathan P., Choi Y.J., Naeem R., Tomizuka K., Sullivan E.J., Knott J.G., Duteau A., Goldsby R.A., Osborne B.A., Ishidae I. & Robl J.M. 2002. Cloned transchromosomic calves producing human immunoglobulin. Nature Biotechnology. 20(9): 889-294.
  22. Lee M.J., Kim S.W., Lee H.G., Im G.S., Yang B.C., Kime N.H. & Kim D.H. 2011. Trichostatin a promotes the development of bovine somatic cell nuclear transfer embryos. Journal of Reproduction and Development. 57(1): 34-42.
  23. Nakagawa M., Koyanagi M., Tanabe K., Takahashi K., Ichisaka T., Aoi T., Okita T., Mochiduki Y., Takizawae N. & Yamanaka S. 2008.Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology. 26(1): 101-106.
  24. Nayernia K., Nolte J., Michelmann H.W., Lee J.H., Rathsack K., Drusenheimer K., Dev A., Wulf G., Ehrmann I.E., Elliott D.J., Okpanyi V., Zechner U., Haaf T., Meinhardt A. & Engel W. 2006. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Developmental Cell. 11(1): 125-132.
  25. Nettersheim D., Biermann K., Gillis A.J., Steger K., Looijengae L.H. & Schorle H. 2011. NANOG promoter methylation and expression correlation during normal and malignant human germ cell development. Epigenetics. 6(1): 114-122.
  26. Ng H.H. & Bird A. 1999. DNA methylation and chromatin modification. Current Opinion in Genetics and Development 9(2): 158-163.
  27. Nichols J., Zevnik B., Anastassiadis K., Niwa H., Klewe-Nebenius D., Chambers I., Scholere H. & Smith A. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 95(3): 379-391.
  28. Ohgane J., Yagie S. & Shiota K. 2008. Epigenetics: the DNA methylation profile of tissue-dependent and differentially methylated regions in cells.Placenta. 29 (Suppl A): S29-35.
  29. Okita K., Ichisakae T. & Yamanaka S. 2007. Generation of germline-competent induced pluripotent stem cells. Nature. 448(7151): 313-317.
  30. Okita K., Nakagawa M., Hyenjong H., Ichisakae T. & Yamanaka S. 2008. Generation of mouse induced pluripotent stem cells without viral vectors.Science. 322(5903): 949-953.
  31. Papapetrou E.P., Tomishima M.J., Chambers S.M., Mica Y., Reed E., Menon J., Tabar V., Mo Q., Studer L. & Sadelain M. 2009. Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation. Proceeding of the National Academy of Science. 106(31): 12759-12764.
  32. Park I.H., Zhao R., West J.A., Yabuuchi A., Huo H., Ince T.A., Lerou P.H., Lensche M.W. & Daley G.Q. 2008. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 451(7175): 141-146.
  33. Pelosi E., Forabosco A. & Schlessinger D. 2011. Germ cell formation from embryonic stem cells and the use of somatic cell nuclei in oocytes. Annals of the New York Academy of Science. 1221: 18-26.
  34. Pesce M. & Scholer H.R. 2000. Oct-4: control of totipotency and germline determination. Molecular Reproduction and Development. 55(4): 452-457.
  35. Picanco-Castro V., Russo-Carbolante E., Reis L.C., Fraga A.M., De Magalhaes D.A., Orellana M.D., Panepucci R.A., Pereirae L.V. & Covas D.T. 2011. Pluripotent reprogramming of fibroblasts by lentiviral mediated insertion of SOX2, C- MYC, and TCL-1A. Stem Cells and Development. 20(1): 169-180.
  36. Pick M., Stelzer Y., Bar-Nur O., Mayshar Y., Edene A. & Benvenisty N. 2009. Clone-and gene-specific aberrations of parental imprinting in human induced pluripotent stem cells. Stem Cells. 27(11): 2686-2690.
  37. Plath K. & Lowry W.E. 2011. Progress in understanding reprogramming to the induced pluripotent state. Nature Reviews Genetics. 12(4): 253-265.
  38. Polejaeva I.A., Chen S.H., Vaught T.D., Page R.L., Mullins J., Ball S., Dai Y., Boone J., Walker S., Ayares D.L., Colmane A. & Campbell K.H. 2000. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature. 407(6800): 86-90.
  39. Rideout W.M. 3rd, Wakayama T., Wutz A., Eggan K., Jackson-Grusby L., Dausman J., Yanagimachie R. & Jaenisch R. 2000. Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nature Genetics. 24(2): 109-110.
  40. Rideout W.M., Eggane K. & Jaenisch R. 2001. Nuclear cloning and epigenetic reprogramming of the genome. Science. 293(5532): 1093-1098.
  41. Roach M., Wang L., Yang X. & Tian X.C. 2006. Bovine embryonic stem cells. Methods in Enzymology. 418: 21-37.
  42. Rossant J. 2001. Stem cells from the Mammalian blastocyst. Stem Cells. 19(6): 477-482.
  43. Santos F. & Dean W. 2004. Epigenetic reprogramming during early development in mammals. Reproduction. 127(6): 643-651.
  44. Santos F., Zakhartchenko V., Stojkovic M., Peters A., Jenuwein J., Wolf E., Reike W. & Dean W. 2003. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Current Biology. 13(13): 1116-1121.
  45. Shi D., Lu F., Wei Y., Cui K., Yang S., Weie J. & Liu Q. 2007. Buffalos (Bubalus bubalis) cloned by nuclear transfer of somatic cells. Biology of Reproduction. 77(2): 285-291.
  46. Shi L.H., Miao Y.L., Ouyang Y.C., Huang J.C., Lei Z.L., Yang J.W., Han Z.M., Song X.F., Sune Q.Y. & Chen D.Y. 2008. Trichostatin A (TSA) improves the development of rabbit-rabbit intraspecies cloned embryos, but not rabbit-human interspecies cloned embryos. Developmental Dynamics. 237(3): 640-648.
  47. Silva J., Barrandon O., Nichols J., Kawaguchi J., Theunissen T.W. & Smith A. 2008. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biology. 6(10): e253.
  48. Solter D. 2000. Mammalian cloning: advances and limitations. Nature Reviews Genetics. 1(3): 199-207.
  49. Sridharan R., Tchieu J., Mason M.J., Yachechko R., Kuoy E., Horvath S., Zhou Q. & Plath K. 2009. Role of the murine reprogramming factors in the induction of pluripotency. Cell. 136(2): 364-377.
  50. Stadtfeld M., Nagaya M., Utikal J., Weire G. & Hochedlinger K. 2008. Induced pluripotent stem cells generated without viral integration. Science. 322(5903): 945-949.
  51. Sumer H., Liu J., Malaver Ortega L.F., Lim M.L., Khodadadie K. & Verma P.J. 2011. NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. Journal of Animal Science. [in press].
  52. Surani M.A. 1998. Imprinting and the initiation of gene silencing in the germ line. Cell. 93(3): 309-312.
  53. Suzuki J., Therrien J., Filion F., Lefebvre R., Goff A.K., Perecin F., Meirellese F.V. & Smith L.C. 2011. Loss of Methylation at H19 DMD Is Associated with Biallelic Expression and Reduced Development in Cattle Derived by Somatic Cell Nuclear Transfer. Biology of Reproduction. 84(5): 947-956.
  54. Tada M. & Tada T. 2006. Nuclear reprogramming of somatic nucleus hybridized with embryonic stem cells by electrofusion. Methods in Molecular Biology. 329: 411-420.
  55. Takahashi K. & Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126(4): 663-76.
  56. Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomodae K. & Yamanaka S. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131(5): 861-872.
  57. Telugu B.P., Ezashie T. & Roberts R.M. 2010. The promise of stem cell research in pigs and other ungulate species. Stem Cell Reviews. 6(1): 31-41.
  58. Toyooka Y., Tsunekawa N., Akasu R. & Noce T. 2003. Embryonic stem cells can form germ cells in vitro. Proceeding of the National Academy of Science. 100(20): 11457-11462.
  59. Wakayama T. & Yanagimachi R. 2001. Mouse cloning with nucleus donor cells of different age and type. Molecular Reproduction and Development. 58(4): 376-383.
  60. Wakayama T., Perry A.C., Zuccotti M., Johnsone K.R. & Yanagimachi R. 1998. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature. 394(6691): 369-374.
  61. Wakayama T., Rodriguez I., Perry A.C., Yanagimachie R. & Mombaerts P. 1999. Mice cloned from embryonic stem cells. Proceeding of the National Academy of Science. 96(26): 14984-14989.
  62. Wang L., Duan E., Sung L.Y., Jeong B.S., Yang X. & Tian X.C. 2005. Generation and characterization of pluripotent stem cells from cloned bovine embryos. Biology of Reproduction. 73(1): 149-155.
  63. Wang Y.S., Xiong X.R., An Z.X., Wang L.J., Liu J., Quan F.S., Huae S. & Zhang Y. 2011. Production of cloned calves by combination treatment of both donor cells and early cloned embryos with 5-aza-2/-deoxycytidine and trichostatin A. Theriogenology. 75(5): 819-825.
  64. Wani N.A., Wernery U., Hassan F.A., Wernerye R. & Skidmore J.A. 2010. Production of the first cloned camel by somatic cell nuclear transfer. Biology of Reproduction. 82(2): 373-379.
  65. Wernig M., Meissner A., Foreman R., Brambrink T., Ku M., Hochedlinger K., Bernsteine B.E. & Jaenisch R. 2007. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 448(7151): 318-324.
  66. West J.A., Park I.H., Daleye G.Q. & Geijsen N. 2006. In vitro generation of germ cells from murine embryonic stem cells. Nature Protocols. 1(4): 2026-2036.
  67. Whitworth K.M. & Prather R.S. 2010. Somatic cell nuclear transfer efficiency: how can it be improved through nuclear remodeling and reprogrammingMolecular Reproduction and Development. 77(12): 1001-1015.
  68. Wilmut I., 2002. Cloning and stem cells. Cloning Stem Cells. 4(2): 103-104.
  69. Wilmut I., Schnieke A.E., Mcwhir J., Kinde A.J. & Campbell K.H. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature. 385(6619): 810-813.
  70. Wu Z., Chen J., Ren J., Bao L., Liao J., Cui C., Rao L., Li H., Gu Y., Dai H., Zhu H., Teng X., Chenge L. & Xiao L. 2009. Generation of pig induced pluripotent stem cells with a drug-inducible system. Journal of Molecular Cell Biology. 1(1): 46-54.
  71. Yang X., Smith S.L., Tian X.C., Lewin H.A., Renarde J.P. & Wakayama T. 2007. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nature Genetics. 39(3): 295-302.