Iron Oxide–Silica Core–Shell Nanoparticles Functionalized with Essential Oils for Antimicrobial Therapies (original) (raw)

Abstract

Recent years have witnessed a tremendous interest in the use of essential oils in biomedical applications due to their intrinsic antimicrobial, antioxidant, and anticancer properties. However, their low aqueous solubility and high volatility compromise their maximum potential, thus requiring the development of efficient supports for their delivery. Hence, this manuscript focuses on developing nanostructured systems based on Fe3O4@SiO2 core–shell nanoparticles and three different types of essential oils, i.e., thyme, rosemary, and basil, to overcome these limitations. Specifically, this work represents a comparative study between co-precipitation and microwave-assisted hydrothermal methods for the synthesis of Fe3O4@SiO2 core–shell nanoparticles. All magnetic samples were characterized by X-ray diffraction (XRD), gas chromatography-mass spectrometry (GC-MS), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), zeta potential, scanning electron microscopy (S...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (82)

  1. Cavicchioli, R.; Ripple, W.J.; Timmis, K.N.; Azam, F.; Bakken, L.R.; Baylis, M.; Behrenfeld, M.J.; Boetius, A.; Boyd, P.W.; Classen, A.T.; et al. Scientists' warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 2019, 17, 569-586.
  2. Spirescu, V.A.; Chircov, C.; Grumezescu, A.M.; Andronescu, E. Polymeric nanoparticles for antimicrobial therapies: An up-to- date overview. Polymers 2021, 13, 724.
  3. Gupta, A.; Gupta, R.; Singh, R.L. Microbes and environment. Princ. Appl. Environ. Biotechnol. A Sustain. Future 2016, 43-84.
  4. Wiertsema, S.P.; van Bergenhenegouwen, J.; Garssen, J.; Knippels, L.M.J. The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients 2021, 13, 886.
  5. Sanchez, E.; Doron, S. Bacterial infections: Overview. In International Encyclopedia of Public Health, 2nd ed.; Quah S.R., Ed.; Academic Press: Oxford, UK, 2017; pp. 196-205.
  6. Antabe, R.; Ziegler, B.R. Diseases, emerging and infectious. In International Encyclopedia of Human Geography, 2nd ed.; Kobayashi A., Ed.; Elsevier: Oxford, UK, 2020; pp. 389-391.
  7. Khameneh, B.; Iranshahy, M.; Soheili, V.; Fazly Bazzaz, B.S. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control. 2019, 8, 118.
  8. Roberts C.A. Chapter 10-Infectious disease: Introduction, periostosis, periostitis, osteomyelitis, and septic arthritis. In Ortnerʹs Identification of Pathological Conditions in Human Skeletal Remains, 3rd ed.; Buikstra, J.E., Ed.; Academic Press: San Diego, CA, USA, 2019; pp. 285-319.
  9. Spirescu, V.A.; Chircov, C.; Grumezescu, A.M.; Vasile, B.Ș.; Andronescu, E. Inorganic nanoparticles and composite films for antimicrobial therapies. Int. J. Mol. Sci. 2021, 22, 4595.
  10. Das, D.; Kakati, M.; Gracy, A.; Sanjeev, A.; Patra, S.M.; Mattaparthi, V.S.K. Screening of druggable conformers of alpha- synuclein using molecular dynamics simulation. Biointerface Res. Appl. Chem. 2020, 10, 5338-5347.
  11. Rahman, M.; Sarker, S.D. Chapter three-Antimicrobial natural products. In Annual Reports in Medicinal Chemistry; Sarker, S.D., Nahar, L., Eds.; Academic Press: London, UK, 2020; Volume 55, pp. 77-113.
  12. de Alcântara Rodrigues, I.; Ferrari, R.G.; Panzenhagen, P.H.N.; Mano, S.B.; Conte-Junior, C.A. Chapter four-Antimicrobial resistance genes in bacteria from animal-based foods. In Advances in Applied Microbiology; Gadd, G.M., Sariaslani, S., Eds.; Academic Press: London, UK, 2020; Volume 112, pp. 143-183.
  13. Franco, C.M.; Vázquez, B.I. Natural compounds as antimicrobial agents. Antibiotics 2020, 9, 217.
  14. Luksiene, Z. 16-Nanoparticles and their potential application as antimicrobials in the food industry. In Food Preservation; Grumezescu, A.M., Ed.; Academic Press: London, UK, 2017; pp. 567-601.
  15. Sizentsov, A.; Mindolina, Y.; Barysheva, E.; Ponomareva, P.; Kunavina, E.; Levenets, T.; Dudko, A.; Kvan, O. Effectiveness of combined use of antibiotics, essential metals and probiotic bacterial strain complexes against multidrug resistant pathogens. Biointerface Res. Appl. Chem. 2020, 10, 4830-4836.
  16. Saeed, F.; Afzaal, M.; Tufail, T.; Ahmad, A. Use of natural antimicrobial agents: A safe preservation approach. In Active Antimicrobial Food Packaging; IntechOpen: London, UK, 2019.
  17. Quinto, E.J.; Caro, I.; Villalobos-Delgado, L.H.; Mateo, J.; De-Mateo-Silleras, B.; Redondo-Del-Río, M.P. Food safety through natural antimicrobials. Antibiotics 2019, 8, 208.
  18. Ullah, F.; Javed, F.; Khan, A.N.; Kudus, M.H.A.; Jamila, N.; Minhaz, A.; Akil, H.M. Synthesis and surface modification of chitosan built nanohydrogel with antiviral and antimicrobial agent for controlled drug delivery. Biointerface Res. Appl. Chem. 2019, 9, 4439-4445.
  19. Irshad, M.; Subhani, M.A.; Ali, S.; Hussain, A. Biological importance of essential oils. In Essential Oils-Oils of Nature; IntechOpen: London, UK, 2019.
  20. Chircov, C.; Miclea, I.I.; Grumezescu, V.; Grumezescu, A.M. Essential oils for bone repair and regeneration-Mechanisms and applications. Materials 2021, 14, 1867.
  21. Mihai, A.D.; Chircov, C.; Grumezescu, A.M.; Holban, A.M. Magnetite nanoparticles and essential oils systems for advanced antibacterial therapies. Int. J. Mol. Sci. 2020, 21, 7355.
  22. Stephane, F.F.Y.; Juleshttps, B. Terpenoids as important bioactive constituents of essential oils. In Essential Oils-Bioactive Compounds, New Perspectives and Applications; IntechOpen: London, UK, 2020.
  23. Feyaerts, A.F.; Luyten, W.; Van Dijck, P. Striking essential oil: Tapping into a largely unexplored source for drug discovery. Sci. Rep. 2020, 10, 2867.
  24. Yap, P.S.X.; Yusoff, K.; Lim, S.-H.E.; Chong, C.-M.; Lai, K.-S. Membrane disruption properties of essential oils-A double-edged sword? Processes 2021, 9, 595.
  25. Kumar, A.; Singh, P.; Gupta, V.; Prakash, B. 8-application of nanotechnology to boost the functional and preservative properties of essential oils. In Functional and Preservative Properties of Phytochemicals; Prakash, B., Ed.; Academic Press: London, UK, 2020; pp. 241-267.
  26. Kapustová, M.; Granata, G.; Napoli, E.; Puškárová, A.; Bučková, M.; Pangallo, D.; Geraci, C. Nanoencapsulated essential oils with enhanced antifungal activity for potential application on agri-food, material and environmental fields. Antibiotics 2021, 10, 31.
  27. Shaik, A.B.; Vani, K.L.S.; Babu, P.S.; Afrin, S.; Supraja, K.; Harish, B.S. Synthesis and screening of novel lipophilic diarylpropeones as prospective antitubercular, antibacterial and antifungal agents. Biointerface Res. Appl. Chem. 2019, 9, 3912- 3918.
  28. Tyagi, P.K.; Mishra, R.; Khan, F.; Gupta, D.; Gola, D. Antifungal effects of silver nanoparticles against various plant pathogenic fungi and its safety evaluation on drosophila melanogaster. Biointerface Res. Appl. Chem. 2020, 10, 6587-6596.
  29. Alghuthaymi, M. Magnetic-silica nanoshell for extraction of fungal genomic DNA from rhizopus oryzae. Biointerface Res. Appl. Chem. 2020, 10, 4972-4976.
  30. Stoica, A.E.; Chircov, C.; Grumezescu, A.M. Nanomaterials for wound dressings: An up-to-date overview. Molecules 2020, 25, 2699.
  31. Makabenta, J.M.V.; Nabawy, A.; Li, C.-H.; Schmidt-Malan, S.; Patel, R.; Rotello, V.M. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 2021, 19, 23-36.
  32. Seabra, A.B.; Pelegrino, M.T.; Haddad, P.S. Chapter 24-Antimicrobial applications of superparamagnetic iron oxide nanoparticles: Perspectives and challenges. In Nanostructures for Antimicrobial Therapy; Ficai A., Grumezescu A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 531-550.
  33. Arias, L.S.; Pessan, J.P.; Vieira, A.P.M.; Lima, T.M.T.d.; Delbem, A.C.B.; Monteiro, D.R. Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics 2018, 7, 46.
  34. Jiang, F.; Fu, Y.; Zhu, Y.; Tang, Z.; Sheng, P. Fabrication of iron oxide/silica core-shell nanoparticles and their magnetic characteristics. J. Alloy. Compd. 2012, 543, 43-48.
  35. Ding, H.L.; Zhang, Y.X.; Wang, S.; Xu, J.M.; Xu, S.C.; Li G.H. Fe3O4@SiO2 core/shell nanoparticles: The silica coating regulations with a single core for different core sizes and shell thicknesses. Chem. Mater. 2012, 24, 4572-4580.
  36. Zhang, M.; Fang, K.; Lin, M.; Hou, B.; Zhong, L.; Zhu, Y.; Wei, W.; Sun, Y. Controlled fabrication of iron oxide/mesoporous silica core-Shell nanostructures. J. Phys. Chem. C 2013, 117, 21529-21538.
  37. Lee, J.; Lee, Y.; Youn, J.; Na, H.; Yu, T.; Kim, H.; Lee, S.M.; Koo, Y.M.; Kwak, J.H.; Park, H.G.; Chang, H.N. Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. Small 2008, 4, 143-152.
  38. Kekalo, K.; Koo, K.; Zeitchick, E.; Baker, I. Microemulsion synthesis of iron core/iron oxide shell magnetic nanoparticles and their physicochemical properties. Mater. Res. Soc. Symp. Proc. 2012, 1416, 10.1557/opl.2012.736.
  39. Campbell J.L.; Arora J.; Cowell S.F.; Garg A.; Eu P.; Bhargava S.K.; Bansal, V. Quasi-cubic magnetite/silica core-shell nanoparticles as enhanced mri contrast agents for cancer imaging. PLoS ONE 2011, 6, e21857.
  40. Gates-Rector, S.; Blanton, T. The powder diffraction file: A quality materials characterization database. Powder Diffr. 2019, 34, 352-360.
  41. Faaliyan, K.; Abdoos, H.; Borhani, E.; Afghahi, S.S.S. Magnetite-silica nanoparticles with core-shell structure: Single-step synthesis, characterization and magnetic behavior. J. Sol-Gel Sci. Technol. 2018, 88, 609-617.
  42. Wang, S.; Tang, J.; Zhao, H.; Wan, J.; Chen, K. Synthesis of magnetite-silica core-shell nanoparticles via direct silicon oxidation. J. Colloid Interface Sci. 2014, 432, 43-46.
  43. Ingham, B.; Toney, M.F. 1-x-ray diffraction for characterizing metallic films. In Metallic Films for Electronic, Optical and Magnetic Applications; Barmak, K., Coffey, K., Eds.; Woodhead Publishing: Cambridge, England, 2014; pp. 3-38.
  44. Ross, J.R.H. Chapter 5-catalyst characterization. In Contemporary Catalysis; Ross, J.R.H., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 121-132.
  45. Karimi Pasandideh, E.; Kakavandi, B.; Nasseri, S.; Mahvi, A.H.; Nabizadeh, R.; Esrafili, A.; Kalantary, R.R. Silica-coated magnetite nanoparticles core-shell spheres (Fe3O4 @SiO2) for natural organic matter removal. J. Environ. Health Sci. Eng. 2016, 14, 1-13.
  46. Abozid, M. Chemical composition, antioxidant and antimicrobial activity of the essential oil of the thyme and rosemary. Int. J. Acad. Res. 2013, 5, 186-195.
  47. Ribeiro, A.D.B.; Ferraz, M.; Polizel, D.; Miszura, A.; Barroso, J.P.; Cunha, A.R.; Souza, T.T.; Ferreira, E.M.; Susin, I.; Pires, A.V. Effect of thyme essential oil on rumen parameters, nutrient digestibility, and nitrogen balance in wethers fed high concentrate diets. Arq. Bras. Med. Veterinária E Zootec. 2020, 72, 573-580.
  48. Sienkiewicz, M.; Łysakowska, M.; Pastuszka, M.; Bienias, W.; Kowalczyk, E. The potential of use basil and rosemary essential oils as effective antibacterial agents. Molecules 2013, 18, 9334-9351.
  49. Abd El-Kareem, M.; Rabbih, M.; Selim, E.; Elsherbiny, E.A.; El-Khateeb, A. Application of gc/eims in combination with semi- empirical calculations for identification and investigation of some volatile components in basil essential oil. Int. J. Anal. Mass Spectrom. Chromatogr. 2016, 4, 14-25.
  50. Van Quy, D.; Minh Hieu, N.; Tra, P.; Nam, N.; Nguyen, H.; Son, N.; Nghia, P.T.; Anh, N.T.V.; Hong, T.T.; Luong, N.H. Synthesis of silica-coated magnetic nanoparticles and application in the detection of pathogenic viruses. J. Nanomater. 2013, 2013, doi: 10.1155/2013/603940.
  51. Nowostawska, M.; Corr, S.; Byrne, S.; McIntyre, J.; Volkov, Y.; Gun'ko, Y.K. Porphyrin-magnetite nanoconjugates for biological imaging. J. Nanobiotechnology 2011, 9, 13.
  52. Emmanuel, V.; Odile, B.; Céline, R. Ftir spectroscopy of woods: A new approach to study the weathering of the carving face of a sculpture. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 1255-1259.
  53. Jean Raphaël, K.; Meimandipour, A. Antimicrobial activity of chitosan film forming solution enriched with essential oils; an in vitro assay. Iran. J. Biotechnol. 2017, 15, 111-119.
  54. Socaciu, M.; Fetea, F.; Rotar, A.; Melinda, F.; Semeniuc, C. Characterization of essential oils extracted from different aromatic plants by ftir spectroscopy. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Food Sci. Technol. 2017, 74, 37.
  55. Mohammad, M.; Ahmadpoor, F.; Shojaosadati, S. Synthesis and Characterization of Fe3O4@ SiO2 Core/Shell Nanoparticles for Biological Applications. 2020. Available online: https://www.researchgate.net/publication/344953045\_Synthesis\_and\_characterization\_of\_Fe3O4SiO2\_coreshell\_nanoparticles _for_biological_applications (accessed on 28 July 2021).
  56. Chellappa, M.; Vijayalakshmi, U. Fabrication of Fe3O4-silica core-shell magnetic nano-particles and its characterization for biomedical applications. Mater. Today Proc. 2019, 9, 371-379.
  57. Maguire, C.M.; Rösslein, M.; Wick, P.; Prina-Mello, A. Characterisation of particles in solution-A perspective on light scattering and comparative technologies. Sci. Technol. Adv. Mater. 2018, 19, 732-745.
  58. Zheng, T.; Cherubin, P.; Cilenti, L.; Teter, K.; Huo, Q. A simple and fast method to study the hydrodynamic size difference of protein disulfide isomerase in oxidized and reduced form using gold nanoparticles and dynamic light scattering. Analyst 2016, 141, 934-938.
  59. Darwish, M.S.A.; Nguyen, N.H.A.; Ševců, A.; Stibor, I. Functionalized magnetic nanoparticles and their effect on Escherichia coli and Staphylococcus aureus. J. Nanomater. 2015, 2015, 416012.
  60. Bondarenko, L.S.; Kovel, E.S.; Kydralieva, K.A.; Dzhardimalieva, G.I.; Illés, E.; Tombácz, E.; Kicheeva, A.G.; Kudryasheva, N.S. Effects of modified magnetite nanoparticles on bacterial cells and enzyme reactions. Nanomaterials 2020, 10, 1499.
  61. Lee, J.-M.; Lim, D.-S.; Jeon, S.-H.; Hur, D.H. Zeta potentials of magnetite particles and alloy 690 surfaces in alkaline solutions. Materials 2020, 13, 3999.
  62. Mohammed, H.B.; Rayyif, S.M.I.; Curutiu, C.; Birca, A.C.; Oprea, O.-C.; Grumezescu, A.M.; Ditu, L.M.; Gheorghe, I.; Chifiriuc, M.C.; Mihaescu, G.; et al. Eugenol-functionalized magnetite nanoparticles modulate virulence and persistence in pseudomonas aeruginosa clinical strains. Molecules 2021, 26, 2189.
  63. Gherasim, O.; Popescu, R.C.; Grumezescu, V.; Mogoșanu, G.D.; Mogoantă, L.; Iordache, F.; Holban, A.M.; Vasile, B.Ș.; Bîrcă, A.C.; Oprea, O.C.; et al. Maple coatings embedded with essential oil-conjugated magnetite for anti-biofilm applications. Materials 2021, 14, 1612.
  64. Sunaryono, S.; Taufiq, A.; Munaji, M.; Indarto, B.; Triwikantoro, T.; Zainuri, M.; Darminto. Magneto-elasticity in hydrogels containing Fe3O4 nanoparticles and their potential applications. AIP Conf. Proc. 2013, 1555, 53-56.
  65. Morales, I.; Costo, R.; Mille, N.; Silva, G.B.d.; Carrey, J.; Hernando A.; De la Presa, P. High frequency hysteresis losses on γ- Fe₂O₃ and Fe₃O₄: Susceptibility as a magnetic stamp for chain formation. Nanomaterials 2018, 8, 970.
  66. Maldonado-Camargo, L.; Unni, M.; Rinaldi, C. Magnetic characterization of iron oxide nanoparticles for biomedical applications. Methods Mol. Biol. 2017, 1570, 47-71.
  67. Zhang, J.X.J.; Hoshino, K. Chapter 7-Nanomaterials for molecular sensing. In Molecular Sensors and Nanodevices, 2 nd ed.; Zhang, J.X.J., Hoshino, K., Eds.; Academic Press: London, UK, 2019; pp. 413-487.
  68. García, M.C.; Uberman, P.M. Chapter 2-Nanohybrid filler-based drug-delivery system. In Nanocarriers for Drug Delivery; Mohapatra, S.S., Ranjan, S., Dasgupta, N., Mishra, R.K., Thomas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 43- 79.
  69. Montazer, M.; Harifi, T. 16-Magnetic nanofinishes for textiles. In Nanofinishing of Textile Materials; Montazer, M., Harifi, T., Eds.; Woodhead Publishing: Cambridge, England, 2018; pp. 225-240.
  70. Lapresta-Fernández, A.; Doussineau, T.; Moro, A.; Dutz, S.; Steiniger, F.; Mohr, G. Magnetic core-shell fluorescent ph ratiometric nanosensor using a stober coating method. Anal. Chim. Acta 2011, 707, 164-170.
  71. Marghussian, V. 4-Magnetic properties of nano-glass ceramics. In Nano-Glass Ceramics; Marghussian, V., Ed.; William Andrew Publishing: Oxford, UK, 2015; pp. 181-223.
  72. Liu, W.; Ma, J.; Sun, S.; Chen, K. Gram-grade cr (Vi) adsorption on porous Fe@ SiO2 hierarchical microcapsules. J. Water Process. Eng. 2016, 12, 111-119.
  73. Alonso, J.; Barandiarán, J.M.; Fernández Barquín, L.; García-Arribas, A. Chapter 1-Magnetic nanoparticles, synthesis, properties, and applications. In Magnetic Nanostructured Materials; El-Gendy, A.A., Barandiarán, J.M., Hadimani, R.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1-40.
  74. Safaei-Ghomi, J.; Ahd, A.A. Antimicrobial and antifungal properties of the essential oil and methanol extracts of eucalyptus largiflorens and eucalyptus intertexta. Pharmacogn. Mag. 2010, 6, 172-175.
  75. Ismail, Z.; Nour, A.; Elhussein, S. Qualitative and quantitative biological studies of three chemotypes of basil essential oils grown in malaysia against E. Coli, S. Aureus and P. Aeruginosa. Malays. J. Fundam. Appl. Sci. 2014, 8, doi:10.11113/mjfas.v8n2.131.
  76. Zarrini, G.; Delgosha, Z.B.; Moghaddam, K.M.; Shahverdi, A.R. Post-antibacterial effect of thymol. Pharm. Biol. 2010, 48, 633- 636.
  77. Tippayatum, P.; Chonhenchob, V. Antibacterial activities of thymol, eugenol and nisin against some food spoilage bacteria. Agric. Nat. Resour. 2007, 41, 319-323.
  78. Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 2019, 24, 2471.
  79. García-Salinas, S.; Elizondo-Castillo, H.; Arruebo, M.; Mendoza, G.; Irusta, S. Evaluation of the antimicrobial activity and cytotoxicity of different components of natural origin present in essential oils. Molecules 2018, 23, 1399.
  80. de Castro, R.D.; de Souza, T.M.P.A.; Bezerra, L.M.D.; Ferreira, G.L.S.; de Brito Costa, E.M.M.; Cavalcanti, A.L. Antifungal activity and mode of action of thymol and its synergism with nystatin against candida species involved with infections in the oral cavity: An in vitro study. BMC Complementary Altern. Med. 2015, 15, 417.
  81. Osei-Safo, D.; Addae-Mensah, I.; Garneau, F.-X.; Koumaglo, H. A comparative study of the antimicrobial activity of the leaf essential oils of chemo-varieties of Clausena anisata (willd.) hook. F. Ex benth. Ind. Crop. Prod.-Ind Crops Prod. 2010, 32, 634-638.
  82. Negut, I.; Grumezescu, V.; Ficai, A.; Grumezescu, A.M.; Holban, A.M.; Popescu, R.C.; Savu, D.; Vasile, B.S.; Socol, G. Maple deposition of nigella sativa functionalized fe3o4 nanoparticles for antimicrobial coatings. Appl. Surf. Sci. 2018, 455, 513-521.