Image Mem-Processing Bio-Inspired Cellular Arrays with Bistable and Analogue Dynamic Memristors (original) (raw)

System-Theoretic Methods for Designing Bio-Inspired Mem-Computing Memristor Cellular Nonlinear Networks

Frontiers in Nanotechnology, 2021

The introduction of nano-memristors in electronics may allow to boost the performance of integrated circuits beyond the Moore era, especially in view of their extraordinary capability to process and store data in the very same physical volume. However, recurring to nonlinear system theory is absolutely necessary for the development of a systematic approach to memristive circuit design. In fact, the application of linear system-theoretic techniques is not suitable to explore thoroughly the rich dynamics of resistance switching memories, and designing circuits without a comprehensive picture of the nonlinear behaviour of these devices may lead to the realization of technical systems failing to operate as desired. Converting traditional circuits to memristive equivalents may require the adaptation of classical methods from nonlinear system theory. This paper extends the theory of time- and space-invariant standard cellular nonlinear networks with first-order processing elements for the...

Generalized reconfigurable memristive dynamical system (MDS) for neuromorphic applications

Frontiers in Neuroscience, 2015

This study firstly presents (i) a novel general cellular mapping scheme for two dimensional neuromorphic dynamical systems such as bio-inspired neuron models, and (ii) an efficient mixed analog-digital circuit, which can be conveniently implemented on a hybrid memristor-crossbar/CMOS platform, for hardware implementation of the scheme. This approach employs 4n memristors and no switch for implementing an n-cell system in comparison with 2n 2 memristors and 2n switches of a Cellular Memristive Dynamical System (CMDS). Moreover, this approach allows for dynamical variables with both analog and one-hot digital values opening a wide range of choices for interconnections and networking schemes. Dynamical response analyses show that this circuit exhibits various responses based on the underlying bifurcation scenarios which determine the main characteristics of the neuromorphic dynamical systems. Due to high programmability of the circuit, it can be applied to a variety of learning systems, real-time applications, and analytically indescribable dynamical systems. We simulate the FitzHugh-Nagumo (FHN), Adaptive Exponential (AdEx) integrate and fire, and Izhikevich neuron models on our platform, and investigate the dynamical behaviors of these circuits as case studies. Moreover, error analysis shows that our approach is suitably accurate. We also develop a simple hardware prototype for experimental demonstration of our approach.

Memristive Excitable Cellular Automata

International Journal of Bifurcation and Chaos, 2011

The memristor is a device whose resistance changes depending on the polarity and magnitude of a voltage applied to the device's terminals. We design a minimalistic model of a regular network of memristors using structurally-dynamic cellular automata. Each cell gets info about states of its closest neighbours via incoming links. A link can be one 'conductive' or 'non-conductive' states. States of every link are updated depending on states of cells the link connects. Every cell of a memristive automaton takes three states: resting, excited (analog of positive polarity) and refractory (analog of negative polarity). A cell updates its state depending on states of its closest neighbours which are connected to the cell via 'conductive' links. We study behaviour of memristive automata in response to point-wise and spatially extended perturbations, structure of localised excitations coupled with topological defects, interfacial mobile excitations and growth of information pathways.

Architectures and Algorithms for Intrinsic Computation with Memristive Devices

Neuromorphic engineering is the research field dedicated to the study and design of braininspired hardware and software tools. Recent advances in emerging nanoelectronics promote the implementation of synaptic connections based on memristive devices. Their non-volatile modifiable conductance was shown to exhibit the synaptic properties often used in connecting and training neural layers. With their nanoscale size and non-volatile memory property, they promise a next step in designing more area and energy efficient neuromorphic hardware. My research deals with the challenges of harnessing memristive device properties that go beyond the behaviors utilized for synaptic weight storage. Based on devices that exhibit non-linear state changes and volatility, I present novel architectures and algorithms that can harness such features for computation. The crossbar architecture is a dense array of memristive devices placed in-between horizontal and vertical nanowires. The regularity of this structure does not inherently provide the means for nonlinear computation of applied input signals. Introducing a modulation scheme that relies on nonlinear memristive device properties, heterogeneous state patterns of applied spatiotemporal input data can be created within the crossbar. In this setup, the untrained and dynamically changing states of the memristive devices offer a useful platform for information processing. Based on the MNIST data set I'll demonstrate how the temporal aspect of memristive state volatility can be utilized to reduce i system size and training complexity for high dimensional input data. With 3 times less neurons and 15 times less synapses to train as compared to other memristor-based implementations, I achieve comparable classification rates of up to 93%. Exploiting dynamic state changes rather than precisely tuned stable states, this approach can tolerate device variation up to 6 times higher than reported levels. Random assemblies of memristive networks are analyzed as a substrate for intrinsic computation in connection with reservoir computing; a computational framework that harnesses observations of inherent dynamics within complex networks. Architectural and device level considerations lead to new levels of task complexity, which random memristive networks are now able to solve. A hierarchical design composed of independent random networks benefits from a diverse set of topologies and achieves prediction errors (NRMSE) on the time-series prediction task NARMA-10 as low as 0.15 as compared to 0.35 for an echo state network. Physically plausible network modeling is performed to investigate the relationship between network dynamics and energy consumption. Generally, increased network activity comes at the cost of exponentially increasing energy consumption due to nonlinear voltage-current characteristics of memristive devices. A trade-off, that allows linear scaling of energy consumption, is provided by the hierarchical approach. Rather than designing individual memristive networks with high switching activity, a collection of less dynamic, but independent networks can provide more diverse network activity per unit of energy. My research extends the possibilities of including emerging nanoelectronics into neuromorphic hardware. It establishes memristive devices beyond storage and motivates future research to further embrace memristive device properties that can be linked to different synaptic functions. Pursuing to exploit the functional diversity of memristive devices will lead to novel architectures and algorithms that study rather than dictate the ii behavior of such devices, with the benefit of creating robust and efficient neuromorphic hardware.

Memristor-based synaptic networks and logical operations using in-situ computing

2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing, 2011

We present new computational building blocks based on memristive devices. These blocks, can be used to implement either supervised or unsupervised learning modules. This is achieved using a crosspoint architecture which is an efficient array implementation for nanoscale two-terminal memristive devices. Based on these blocks and an experimentally verified SPICE macromodel for the memristor, we demonstrate that firstly, the Spike-Timing-Dependent Plasticity (STDP) can be implemented by a single memristor device and secondly, a memristor-based competitive Hebbian learning through STDP using a 1 × 1000 synaptic network. This is achieved by adjusting the memristor's conductance values (weights) as a function of the timing difference between presynaptic and postsynaptic spikes. These implementations have a number of shortcomings due to the memristor's characteristics such as memory decay, highly nonlinear switching behaviour as a function of applied voltage/current, and functional uniformity. These shortcomings can be addressed by utilising a mixed gates that can be used in conjunction with the analogue behaviour for biomimetic computation. The digital implementations in this paper use in-situ computational capability of the memristor.

Integrated Circuit with Memristor Emulator Array and Neuron Circuits for Biologically Inspired Neuromorphic Pattern Recognition

Journal of Circuits, Systems and Computers, 2017

This paper details an application-specific integrated circuit (ASIC) with an array of switched-resistor-based memristors (resistor with memory) and integrate & fire (I & F) neuron circuits for the development of memristor-based pattern recognition. Since real memristors are not commercially available, a compact memristor emulator is needed for device study. The designed ASIC has five memristor emulators with one having a conductance range from 4.88[Formula: see text]ns to 4.99[Formula: see text][Formula: see text]s (200[Formula: see text]k[Formula: see text] to 204.8[Formula: see text]M[Formula: see text]) and other four having conductance ranging from 195[Formula: see text]ns to 190[Formula: see text][Formula: see text]s (5.2[Formula: see text]k[Formula: see text] to 5.12[Formula: see text]M[Formula: see text]). Signal processing has been planned to be off-chip to get the freedom of programmability of a wide range of memristive behavior. This paper introduces the memristor emulator...

Comparison of the Performance of the Memristor Models in 2D Cellular Nonlinear Network

2021

Many charge controlled models of memristor have been proposed for various applications. First, the original linear dopant drift model suffers discontinuities close to the memristor layer boundaries. Then, the nonlinear dopant drift model improves the memristor behavior near these boundaries but lacks physical meaning and fails for some initial conditions. Finally, we present a new model to correct these defects. We compare these three models in specific situations: (1) when a sine input voltage is applied to the memristor, (2) when a constant voltage is applied to it, and (3) how a memristor transfers charges in a circuit point of view involving resistance-capacitance network. In the later case, we show that our model allows for study of the memristor behavior with phase portraits for any initial conditions and without boundary limitations.

Cytomorphic Electronics With Memristors for Modeling Fundamental Genetic Circuits

IEEE Transactions on Biomedical Circuits and Systems, 2020

Cytomorphic engineering attempts to study the cellular behavior of biological systems using electronics. As such, it can be considered analogous to the study of neurobiological concepts for neuromorphic engineering applications. To date, digital and analog translinear electronics have commonly been used in the design of cytomorphic circuits; Such circuits could greatly benefit from lowering the area of the digital memory via memristive circuits. In this work, we propose a novel approach that utilizes the Boltzmann-exponential stochastic transport of ionic species through insulators to naturally model the nonlinear and stochastic behavior of biochemical reactions. We first show that two-terminal memristive devices can capture the non-linear and stochastic behavior of biochemical reactions. Then, we present the design of several building blocks based on analog memristive circuits that inherently model the biophysical mechanisms of gene expression. The circuits model induction by small molecules, activation and repression by transcription factors, biological promoters, cooperative binding, and transcriptional and translational regulation of gene expression. Finally, we utilize the building blocks to form complex mixed-signal networks that can simulate the delay-induced oscillator and the p53-mdm2 interaction in the cancer signaling pathway. Our approach can provide a fast and simple emulative framework for studying genetic circuits and arbitrary large-scale biological networks in systems and synthetic biology. Some challenges may be that memristive devices with frequent learning and programming do not have the same longevity as traditional transistor-based electron-transport devices, and operate with significantly slower time constants, which can limit emulation speed.

Memristor-Based Cellular Nonlinear/Neural Network: Design, Analysis, and Applications

IEEE transactions on neural networks and learning systems, 2014

Cellular nonlinear/neural network (CNN) has been recognized as a powerful massively parallel architecture capable of solving complex engineering problems by performing trillions of analog operations per second. The memristor was theoretically predicted in the late seventies, but it garnered nascent research interest due to the recent much-acclaimed discovery of nanocrossbar memories by engineers at the Hewlett-Packard Laboratory. The memristor is expected to be co-integrated with nanoscale CMOS technology to revolutionize conventional von Neumann as well as neuromorphic computing. In this paper, a compact CNN model based on memristors is presented along with its performance analysis and applications. In the new CNN design, the memristor bridge circuit acts as the synaptic circuit element and substitutes the complex multiplication circuit used in traditional CNN architectures. In addition, the negative differential resistance and nonlinear current-voltage characteristics of the memri...