Characterizing Dense Urban Areas from Mobile Phone-Call Data: Discovery and Social Dynamics (original) (raw)
2010, 2010 IEEE Second International Conference on Social Computing
The recent adoption of ubiquitous computing technologies (e.g. GPS, WLAN networks) has enabled capturing large amounts of spatio-temporal data about human motion. The digital footprints computed from these datasets provide complementary information for the study of social and human dynamics, with applications ranging from urban planning to transportation and epidemiology. A common problem for all these applications is the detection of dense areas, i.e. areas where individuals concentrate within a specific geographical region and time period. Nevertheless, the techniques used so far face an important limitation: they tend to identify as dense areas regions that do not respect the natural tessellation of the underlying space. In this paper, we propose a novel technique, called DAD-MST, to detect dense areas based on the Maximum Spanning Tree (MST) algorithm applied over the communication antennas of a cell phone infrastructure. We evaluate and validate our approach with a real dataset containing the Call Detail Records (CDR) of over one million individuals, and apply the methodology to study social dynamics in an urban environment.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact