Evaluation of federated learning aggregation algorithms (original) (raw)

A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison

2021 IEEE International Conference on Pervasive Computing and Communications (PerCom), 2021

Pervasive computing promotes the installation of connected devices in our living spaces in order to provide services. Two major developments have gained significant momentum recently: an advanced use of edge resources and the integration of machine learning techniques for engineering applications. This evolution raises major challenges, in particular related to the appropriate distribution of computing elements along an edgeto-cloud continuum. About this, Federated Learning has been recently proposed for distributed model training in the edge. The principle of this approach is to aggregate models learned on distributed clients in order to obtain a new, more general model. The resulting model is then redistributed to clients for further training. To date, the most popular federated learning algorithm uses coordinate-wise averaging of the model parameters for aggregation. However, it has been shown that this method is not adapted in heterogeneous environments where data is not identically and independently distributed (non-iid). This corresponds directly to some pervasive computing scenarios where heterogeneity of devices and users challenges machine learning with the double objective of generalization and personalization. In this paper, we propose a novel aggregation algorithm, termed FedDist, which is able to modify its model architecture (here, deep neural network) by identifying dissimilarities between specific neurons amongst the clients. This permits to account for clients' specificity without impairing generalization. Furthermore, we define a complete method to evaluate federated learning in a realistic way taking generalization and personalization into account. Using this method, FedDist is extensively tested and compared with three state-of-the-art federated learning algorithms on the pervasive domain of Human Activity Recognition with smartphones.

Evaluation and comparison of federated learning algorithms for Human Activity Recognition on smartphones

Pervasive and Mobile Computing

Pervasive computing promotes the integration of smart devices in our living spaces to develop services providing assistance to people. Such smart devices are increasingly relying on cloud-based Machine Learning, which raises questions in terms of security (data privacy), reliance (latency), and communication costs. In this context, Federated Learning (FL) has been introduced as a new machine learning paradigm enhancing the use of local devices. At the server level, FL aggregates models learned locally on distributed clients to obtain a more general model. In this way, no private data is sent over the network, and the communication cost is reduced. Unfortunately, however, the most popular federated learning algorithms have been shown not to be adapted to some highly heterogeneous pervasive computing environments. In this paper, we propose a new FL algorithm, termed FedDist, which can modify models (here, deep neural network) during training by identifying dissimilarities between neurons among the clients. This permits to account for clients' specificity without impairing generalization. FedDist evaluated with three state-of-the-art federated learning algorithms on three large heterogeneous mobile Human Activity Recognition datasets. Results have shown the ability of FedDist to adapt to heterogeneous data and the capability of FL to deal with asynchronous situations.

Federated Learning with Heterogeneous Labels and Models for Mobile Activity Monitoring

2020

Various health-care applications such as assisted living, fall detection, etc., require modeling of user behavior through Human Activity Recognition (HAR). Such applications demand characterization of insights from multiple resource-constrained user devices using machine learning techniques for effective personalized activity monitoring. On-device Federated Learning proves to be an effective approach for distributed and collaborative machine learning. However, there are a variety of challenges in addressing statistical (non-IID data) and model heterogeneities across users. In addition, in this paper, we explore a new challenge of interest -- to handle heterogeneities in labels (activities) across users during federated learning. To this end, we propose a framework for federated label-based aggregation, which leverages overlapping information gain across activities using Model Distillation Update. We also propose that federated transfer of model scores is sufficient rather than model...

Reviewing Federated Learning Aggregation Algorithms; Strategies, Contributions, Limitations and Future Perspectives

Electronics

The success of machine learning (ML) techniques in the formerly difficult areas of data analysis and pattern extraction has led to their widespread incorporation into various aspects of human life. This success is due in part to the increasing computational power of computers and in part to the improved ability of ML algorithms to process large amounts of data in various forms. Despite these improvements, certain issues, such as privacy, continue to hinder the development of this field. In this context, a privacy-preserving, distributed, and collaborative machine learning technique called federated learning (FL) has emerged. The core idea of this technique is that, unlike traditional machine learning, user data is not collected on a central server. Nevertheless, models are sent to clients to be trained locally, and then only the models themselves, without associated data, are sent back to the server to combine the different locally trained models into a single global model. In this ...

Federated Learning and catastrophic forgetting in pervasive computing: demonstration in HAR domain

2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops)

Federated Learning has been introduced as a new machine learning paradigm enhancing the use of local devices. At a server level, FL regularly aggregates models learned locally on distributed clients to obtain a more general model. In this way, no private data is sent over the network, and the communication cost is reduced. However, current solutions rely on the availability of large amounts of stored data at the client side in order to fine-tune the models sent by the server. Such setting is not realistic in mobile pervasive computing where data storage must be kept low and data characteristic (distribution) can change dramatically. To account for this variability, a solution is to use the data regularly collected by the client to progressively adapt the received model. But such naive approach exposes clients to the well-known problem of catastrophic forgetting. The purpose of this paper is to demonstrate this problem in the mobile human activity recognition context on smartphones.

Towards Effective Device-Aware Federated Learning

AIIA19 - The 18th International Conference of the Italian Association for Artificial Intelligence , 2019

With the wealth of information produced by social networks, smartphones, medical or financial applications, speculations have been raised about the sensitivity of such data in terms of users' personal privacy and data security. To address the above issues, Federated Learning (FL) has been recently proposed as a means to leave data and computational resources distributed over a large number of nodes (clients) where a central coordinating server aggregates only locally computed updates without knowing the original data. In this work, we extend the FL framework by pushing forward the state the art in the field on several dimensions: (i) unlike the original FedAvg approach relying solely on single criteria (i.e., local dataset size), a suite of domain-and client-specific criteria constitute the basis to compute each local client's contribution, (ii) the multi-criteria contribution of each device is computed in a prioritized fashion by leveraging a priority-aware aggregation operator used in the field of information retrieval, and (iii) a mechanism is proposed for online-adjustment of the aggregation operator parameters via a local search strategy with backtracking. Extensive experiments on a publicly available dataset indicate the merits of the proposed approach compared to standard FedAvg baseline.

FedStack: Personalized activity monitoring using stacked federated learning

Knowledge Based Systems, 2022

A novel federated architecture, FedStack, is proposed to overcome the heterogeneity limitation in traditional federated learning. • Enhanced personalized patient monitoring by adopting the proposed novel federated architecture to classify physical activities. • FedStack framework outperformed the baseline models' performance in federated learning.

Federated Learning for Resource-Constrained IoT Devices: Panoramas and State of the Art

Adaptation, learning, and optimization, 2022

Nowadays, devices are equipped with advanced sensors with higher processing/computing capabilities. Further, widespread Internet availability enables communication among sensing devices. As a result, vast amounts of data are generated on edge devices to drive Internet-of-Things (IoT), crowdsourcing, and other emerging technologies. The extensive amount of collected data can be pre-processed, scaled, classified, and finally, used for predicting future events with machine learning (ML) methods. In traditional ML approaches, data is sent to and processed in a central server, which encounters communication overhead, processing delay, privacy leakage, and security issues. To overcome these challenges, each client can be trained locally based on its available data and by learning from the global model. This decentralized learning approach is referred to as federated learning (FL). However, in large-scale networks, there may be clients with varying computational resource capabilities. This may lead to implementation and scalability challenges for FL techniques. In this paper, we first introduce some recently implemented real-life applications of FL. We then emphasize on the core challenges of implementing the FL algorithms from the perspective of resource limitations (e.g., memory, bandwidth, and energy budget) of client devices. We finally discuss open issues associated with FL and highlight future directions in the FL area concerning resource-constrained devices.

FedPerf: A Practitioners’ Guide to Performance of Federated Learning Algorithms

Federated Learning (FL) enables the edge devices to collaboratively train a joint model without sharing their local data. This decentralised and distributed approach improves user privacy, security, and trust. Different variants of FL algorithms have presented promising results on both IID and skewed Non-IID data. However, the performance of FL algorithms is found to be sensitive to the FL system parameters and hyperparameters of the used model. In practice, tuning the right set of parameter settings for an FL algorithm is an expensive task. In this preregister paper, we propose an empirical investigation on five prominent FL algorithms to discover the relation between the FL System Parameters (FLSPs) and their performance. The FLSPs adds extra complexity to FL algorithms over a traditional ML system. We hypothesise that choosing the best FL algorithm for the given FLSP is not a trivial problem. Further, we endeavour to formulate a single easy-to-use metric which can describe the pe...