A distillation-based approach integrating continual learning and federated learning for pervasive services (original) (raw)

Federated Continual Learning through distillation in pervasive computing

2022 IEEE International Conference on Smart Computing (SMARTCOMP)

Federated Learning has been introduced as a new machine learning paradigm enhancing the use of local devices. At a server level, FL regularly aggregates models learned locally on distributed clients to obtain a more general model. Current solutions rely on the availability of large amounts of stored data at the client side in order to fine-tune the models sent by the server. Such setting is not realistic in mobile pervasive computing where data storage must be kept low and data characteristic can change dramatically. To account for this variability, a solution is to use the data regularly collected by the client to progressively adapt the received model. But such naive approach exposes clients to the well-known problem of catastrophic forgetting. To address this problem, we have defined a Federated Continual Learning approach which is mainly based on distillation. Our approach allows a better use of resources, eliminating the need to retrain from scratch at the arrival of new data and reducing memory usage by limiting the amount of data to be stored. This proposal has been evaluated in the Human Activity Recognition (HAR) domain and has shown to effectively reduce the catastrophic forgetting effect.

Federated Learning and catastrophic forgetting in pervasive computing: demonstration in HAR domain

2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops)

Federated Learning has been introduced as a new machine learning paradigm enhancing the use of local devices. At a server level, FL regularly aggregates models learned locally on distributed clients to obtain a more general model. In this way, no private data is sent over the network, and the communication cost is reduced. However, current solutions rely on the availability of large amounts of stored data at the client side in order to fine-tune the models sent by the server. Such setting is not realistic in mobile pervasive computing where data storage must be kept low and data characteristic (distribution) can change dramatically. To account for this variability, a solution is to use the data regularly collected by the client to progressively adapt the received model. But such naive approach exposes clients to the well-known problem of catastrophic forgetting. The purpose of this paper is to demonstrate this problem in the mobile human activity recognition context on smartphones.

Federated and continual learning for classification tasks in a society of devices

2021

Today we live in a context in which devices are increasingly interconnected and sensorized and are almost ubiquitous. Deep learning has become in recent years a popular way to extract knowledge from the huge amount of data that these devices are able to collect. Nevertheless, centralized state-of-the-art learning methods have a number of drawbacks when facing real distributed problems, in which the available information is usually private, partial, biased and evolving over time. Federated learning is a popular framework that allows multiple distributed devices to train models remotely, collaboratively, and preserving data privacy. However, the current proposals in federated learning focus on deep architectures that in many cases are not feasible to implement in non-dedicated devices such as smartphones. Also, little research has been done regarding the scenario where data distribution changes over time in unforeseen ways, causing what is known as concept drift. Therefore, in this wo...

Quantifying Catastrophic Forgetting in Continual Federated Learning

2023

The deployment of Federated Learning (FL) systems poses various challenges such as data heterogeneity and communication efficiency. We focus on a practical FL setup that has recently drawn attention, where the data distribution on each device is not static but dynamically evolves over time. This setup, referred to as Continual Federated Learning (CFL), suffers from catastrophic forgetting, i.e., the undesired forgetting of previous knowledge after learning on new data, an issue not encountered with vanilla FL. In this work, we formally quantify catastrophic forgetting in a CFL setup, establish links to training optimization and evaluate different episodic replay approaches for CFL on a large scale realworld NLP dataset. To the best of our knowledge, this is the first such study of episodic replay for CFL. We show that storing a small set of past data boosts performance and significantly reduce forgetting, providing evidence that carefully designed sampling strategies can lead to further improvements.

Non-IID data and Continual Learning processes in Federated Learning: A long road ahead

2021

Federated Learning is a novel framework that allows multiple devices or institutions to train a machine learning model collaboratively while preserving their data private. This decentralized approach is prone to suffer the consequences of data statistical heterogeneity, both across the different entities and over time, which may lead to a lack of convergence. To avoid such issues, different methods have been proposed in the past few years. However, data may be heterogeneous in lots of different ways, and current proposals do not always determine the kind of heterogeneity they are considering. In this work, we formally classify data statistical heterogeneity and review the most remarkable learning strategies that are able to face it. At the same time, we introduce approaches from other machine learning frameworks, such as Continual Learning, that also deal with data heterogeneity and could be easily adapted to the Federated Learning settings.

IL4IoT: Incremental Learning for Internet-of-Things Devices

2019

Considering that Internet-of-Things (IoT) devices are often deployed in highly dynamic environments, mainly due to their continuous exposure to end-users’ living environments, it is imperative that the devices can continually learn new concepts from data stream without catastrophic forgetting. Although simply replaying all the previous training samples can alleviate this catastrophic forgetting problem, it not only may pose privacy risks, but also may require huge computing and memory resources, which makes this solution infeasible for resource-constrained IoT devices. In this paper, we propose IL4IoT, a lightweight framework for incremental learning for IoT devices. The framework consists of two cooperative parts: a continually updated knowledge-base and a task-solving model. Through this framework, we can achieve incremental learning while alleviating the catastrophic forgetting issue, without sacrificing privacy-protection and computing-resource efficiency. Our experiments on MNI...

Federated Learning for Resource-Constrained IoT Devices: Panoramas and State of the Art

Adaptation, learning, and optimization, 2022

Nowadays, devices are equipped with advanced sensors with higher processing/computing capabilities. Further, widespread Internet availability enables communication among sensing devices. As a result, vast amounts of data are generated on edge devices to drive Internet-of-Things (IoT), crowdsourcing, and other emerging technologies. The extensive amount of collected data can be pre-processed, scaled, classified, and finally, used for predicting future events with machine learning (ML) methods. In traditional ML approaches, data is sent to and processed in a central server, which encounters communication overhead, processing delay, privacy leakage, and security issues. To overcome these challenges, each client can be trained locally based on its available data and by learning from the global model. This decentralized learning approach is referred to as federated learning (FL). However, in large-scale networks, there may be clients with varying computational resource capabilities. This may lead to implementation and scalability challenges for FL techniques. In this paper, we first introduce some recently implemented real-life applications of FL. We then emphasize on the core challenges of implementing the FL algorithms from the perspective of resource limitations (e.g., memory, bandwidth, and energy budget) of client devices. We finally discuss open issues associated with FL and highlight future directions in the FL area concerning resource-constrained devices.

A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison

2021 IEEE International Conference on Pervasive Computing and Communications (PerCom), 2021

Pervasive computing promotes the installation of connected devices in our living spaces in order to provide services. Two major developments have gained significant momentum recently: an advanced use of edge resources and the integration of machine learning techniques for engineering applications. This evolution raises major challenges, in particular related to the appropriate distribution of computing elements along an edgeto-cloud continuum. About this, Federated Learning has been recently proposed for distributed model training in the edge. The principle of this approach is to aggregate models learned on distributed clients in order to obtain a new, more general model. The resulting model is then redistributed to clients for further training. To date, the most popular federated learning algorithm uses coordinate-wise averaging of the model parameters for aggregation. However, it has been shown that this method is not adapted in heterogeneous environments where data is not identically and independently distributed (non-iid). This corresponds directly to some pervasive computing scenarios where heterogeneity of devices and users challenges machine learning with the double objective of generalization and personalization. In this paper, we propose a novel aggregation algorithm, termed FedDist, which is able to modify its model architecture (here, deep neural network) by identifying dissimilarities between specific neurons amongst the clients. This permits to account for clients' specificity without impairing generalization. Furthermore, we define a complete method to evaluate federated learning in a realistic way taking generalization and personalization into account. Using this method, FedDist is extensively tested and compared with three state-of-the-art federated learning algorithms on the pervasive domain of Human Activity Recognition with smartphones.

Concept drift detection and adaptation for federated and continual learning

Multimedia Tools and Applications

Smart devices, such as smartphones, wearables, robots, and others, can collect vast amounts of data from their environment. This data is suitable for training machine learning models, which can significantly improve their behavior, and therefore, the user experience. Federated learning is a young and popular framework that allows multiple distributed devices to train deep learning models collaboratively while preserving data privacy. Nevertheless, this approach may not be optimal for scenarios where data distribution is non-identical among the participants or changes over time, causing what is known as concept drift. Little research has yet been done in this field, but this kind of situation is quite frequent in real life and poses new challenges to both continual and federated learning. Therefore, in this work, we present a new method, called Concept-Drift-Aware Federated Averaging (CDA-FedAvg). Our proposal is an extension of the most popular federated algorithm, Federated Averagi...

Evaluation and comparison of federated learning algorithms for Human Activity Recognition on smartphones

Pervasive and Mobile Computing

Pervasive computing promotes the integration of smart devices in our living spaces to develop services providing assistance to people. Such smart devices are increasingly relying on cloud-based Machine Learning, which raises questions in terms of security (data privacy), reliance (latency), and communication costs. In this context, Federated Learning (FL) has been introduced as a new machine learning paradigm enhancing the use of local devices. At the server level, FL aggregates models learned locally on distributed clients to obtain a more general model. In this way, no private data is sent over the network, and the communication cost is reduced. Unfortunately, however, the most popular federated learning algorithms have been shown not to be adapted to some highly heterogeneous pervasive computing environments. In this paper, we propose a new FL algorithm, termed FedDist, which can modify models (here, deep neural network) during training by identifying dissimilarities between neurons among the clients. This permits to account for clients' specificity without impairing generalization. FedDist evaluated with three state-of-the-art federated learning algorithms on three large heterogeneous mobile Human Activity Recognition datasets. Results have shown the ability of FedDist to adapt to heterogeneous data and the capability of FL to deal with asynchronous situations.