Population fragmentation drives up genetic diversity in signals of individual identity (original) (raw)
Related papers
Social diversity in humans: implications and hidden consequences for biological research
Cold Spring Harbor perspectives in biology, 2014
Humans are both similar and diverse in such a vast number of dimensions that for human geneticists and social scientists to decide which of these dimensions is a worthy focus of empirical investigation is a formidable challenge. For geneticists, one vital question, of course, revolves around hypothesizing which kind of social diversity might illuminate genetic variation-and vice versa (i.e., what genetic variation illuminates human social diversity). For example, are there health outcomes that can be best explained by genetic variation-or for social scientists, are health outcomes mainly a function of the social diversity of lifestyles and social circumstances of a given population? Indeed, what is a "population," how is it bounded, and are those boundaries most appropriate or relevant for human genetic research, be they national borders, religious affiliation, ethnic or racial identification, or language group, to name but a few? For social scientists, the matter of what ...
Adaptation to fragmentation: evolutionary dynamics driven by human influences
Philosophical Transactions of the Royal Society B: Biological Sciences
Fragmentation—the process by which habitats are transformed into smaller patches isolated from each other—has been identified as a major threat for biodiversity. Fragmentation has well-established demographic and population genetic consequences, eroding genetic diversity and hindering gene flow among patches. However, fragmentation should also select on life history, both predictably through increased isolation, demographic stochasticity and edge effects, and more idiosyncratically via altered biotic interactions. While species have adapted to natural fragmentation, adaptation to anthropogenic fragmentation has received little attention. In this review, we address how and whether organisms might adapt to anthropogenic fragmentation. Drawing on selected case studies and evolutionary ecology models, we show that anthropogenic fragmentation can generate selection on traits at both the patch and landscape scale, and affect the adaptive potential of populations. We suggest that dispersal...
Ethnic Identity and Genome Wide Runs of Homozygosity
Behavior Genetics, 2021
It is long known that inbreeding increases the detrimental effects of recessive sequence variants in “Runs of Homozygosity” (ROHs). However, although the phenotypic association of ROH has been investigated for a variety of traits, the statistical power of the results often remains limited as a sufficiently high number of cases are available for only a restricted number of traits. In the present study, we aim to analyze the association of runs of homozygosity with the trait “in-group ethnic favoritism”. This analysis assumes that if ethnic identity is important for an individual, that individual may tend to marry more frequently within their own group and therefore ROH are expected to increase. We hypothesize that an attitude preferring one’s own ethnic group may be associated with a stronger tendency of inbreeding and, as a result, with more and longer ROHs. Accordingly, we investigated the association between the attitude to someone’s own ethnicity and ROH, using the Wisconsin Long...
Estimating Ethnic Genetic Interests: Is It Adaptive to Resist Replacement Migration?
Population and Environment, 2002
Analyses of the costs and benefits of immigration have not considered the dependence of an ethny's reproductive fitness on its monopoly of a demarcated territory. Global assays of human genetic variation allow estimation of the genetic losses incurred by a member of a population when random fellow ethnics are replaced by immigrants from different ethnies. This potential loss defines an