Manifold learning based speaker dependent dimension reduction for robust text independent speaker verification (original) (raw)
2014, International Journal of Speech Technology
Speaker verification has been studied widely from different points of view, including accuracy, robustness and being real-time. Recent studies have turned toward better feature stability and robustness. In this paper we study the effect of nonlinear manifold based dimensionality reduction for feature robustness. Manifold learning is a popular recent approach for nonlinear dimensionality reduction. Algorithms for this task are based on the idea that each data point may be described as a function of only a few parameters. Manifold learning algorithms attempt to uncover these parameters in order to find a low-dimensional representation of the data. From the manifold based dimension reduction approaches, we applied the widely used Isometric mapping (Isomap) algorithm. Since in the problem of speaker verification, the input utterance is compared with the model of the claiming client, a speaker dependent feature transformation would be beneficial for deciding on the identity of the speaker. Therefore, our first contribution is to use Isomap dimension reduction approach in the speaker dependent context and compare its performance with two other widely used approaches, namely principle component analysis and factor analysis. The other contribution of our work is to perform the nonlinear transformation in a speaker-dependent framework. We evaluated this approach in a GMM based speaker verification framework using Tfarsdat Telephone speech dataset for different noises and SNRs and the evaluations have shown reliability and robustness even in low SNRs. The results also
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.